Job request: 5008
- Organisation:
- University of Manchester
- Workspace:
- brit_cc_study
- ID:
- n4hopf777juz5ndu
This page shows the technical details of what happened when the authorised researcher Ya-Ting Yang requested one or more actions to be run against real patient data in the project, within a secure environment.
By cross-referencing the list of jobs with the
pipeline section below, you can infer what
security level
various outputs were written to. Researchers can never directly
view outputs marked as
highly_sensitive
;
they can only request that code runs against them. Outputs
marked as
moderately_sensitive
can be viewed by an approved researcher by logging into a highly
secure environment. Only outputs marked as
moderately_sensitive
can be requested for release to the public, via a controlled
output review service.
Jobs
-
- Job identifier:
-
hoz25eg3qw6tehs6
-
- Job identifier:
-
wh77arrsbnezevus
-
- Job identifier:
-
xuvbl2rpokoov55o
-
- Job identifier:
-
z7w6ygqdlslsafdb
-
- Job identifier:
-
txutwzp3hathjn7b
-
- Job identifier:
-
n3kcvclvpnyax7pj
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 1000
actions:
# generate_study_population:
# run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2019-01-01 to today by month" --skip-existing --output-dir=output/measures --output-format=csv.gz
# outputs:
# highly_sensitive:
# cohort: output/measures/input_*.csv.gz
# generate_study_population_elderly:
# run: cohortextractor:latest generate_cohort --study-definition study_definition_elderly
# --output-format=csv.gz
# outputs:
# highly_sensitive:
# cohort: output/input_elderly.csv.gz
# generate_measures:
# run: cohortextractor:latest generate_measures --study-definition study_definition --skip-existing --output-dir=output/measures
# needs: [generate_study_population]
# outputs:
# moderately_sensitive:
# measure_csv: output/measures/measure_*.csv
# describe_elderly_agedis:
# run: r:latest analysis/tables/gen_csv_age_check.R
# needs: [generate_study_population_elderly]
# outputs:
# moderately_sensitive:
# agetable: output/age_quant.csv
# describe:
# run: r:latest analysis/plot/overall_ab_prescribing.R
# needs: [generate_measures]
# outputs:
# moderately_sensitive:
# cohort: output/overall.png
# boxplot: output/overallbox.png
# describe_percentile:
# run: r:latest analysis/plot/overall_ab_prescribing_2575percentile.R
# needs: [generate_measures]
# outputs:
# moderately_sensitive:
# percentile: output/overall_25th_75th_percentile.png
# describe_starpu:
# run: r:latest analysis/plot/starpu_ab_prescribing.R
# needs: [generate_measures]
# outputs:
# moderately_sensitive:
# cohort: output/starpuline.png
# boxplot: output/starpubox.png
# generate_notebook_starpu:
# run: jupyter:latest jupyter nbconvert /workspace/analysis/starpu.ipynb --execute --to html --output-dir=/workspace/output --ExecutePreprocessor.timeout=86400
# needs: [generate_measures]
# outputs:
# moderately_sensitive:
# notebook: output/starpu.html
# figures: output/*
# tables: output/tables/*
# csvs: output/*/* # two possible subfolders
# text: output/text/*
# describe_infection_ab_UTI:
# run: r:latest analysis/plot/infection_ab_UTI.R
# needs: [generate_study_population, generate_measures]
# outputs:
# moderately_sensitive:
# plot: output/UTI.png
# generate_study_population:
# run: cohortextractor:latest generate_cohort --study-definition study_definition_covid_general_population --index-date-range "2020-02-01 to 2021-12-31 by month" --skip-existing --output-dir=output/measures --output-format=csv.gz
# outputs:
# highly_sensitive:
# cohort: output/measures/input_*.csv.gz
generate_study_population:
run: cohortextractor:latest generate_cohort --study-definition study_definition_general_population
outputs:
highly_sensitive:
cohort: output/input_general_population.csv
generate_study_population_covid_primarycare:
run: cohortextractor:latest generate_cohort --study-definition study_definition_covid_primarycare
outputs:
highly_sensitive:
cohort: output/input_covid_primarycare.csv
generate_study_population_covid_SGSS:
run: cohortextractor:latest generate_cohort --study-definition study_definition_covid_SGSS
outputs:
highly_sensitive:
cohort: output/input_covid_SGSS.csv
generate_study_population_covid_admission:
run: cohortextractor:latest generate_cohort --study-definition study_definition_covid_admission
outputs:
highly_sensitive:
cohort: output/input_covid_admission.csv
# generate_study_population_covid_icu:
# run: cohortextractor:latest generate_cohort --study-definition study_definition_covid_icu
# outputs:
# highly_sensitive:
# cohort: output/input_covid_icu.csv
generate_study_population_covid_death_ons:
run: cohortextractor:latest generate_cohort --study-definition study_definition_covid_death_ons
outputs:
highly_sensitive:
cohort: output/input_covid_death_ons.csv
generate_study_population_covid_death_cpns:
run: cohortextractor:latest generate_cohort --study-definition study_definition_covid_death_cpns
outputs:
highly_sensitive:
cohort: output/input_covid_death_cpns.csv
# exclusion:
# run: r:latest analysis/exclusion.R
# needs: [generate_study_population_covid_primarycare, generate_study_population_covid_SGSS,generate_study_population_covid_admission,generate_study_population_covid_icu,generate_study_population_covid_death_ons,generate_study_population_covid_death_cpns,generate_study_population]
# outputs:
# highly_sensitive:
# cohort1: output/case_covid_infection.csv
# cohort2: output/case_covid_admission.csv
# cohort3: output/case_covid_icu_death.csv
# cohort4: output/control_general_population_*.csv
# cohort5: output/case_covid_infection_*.csv
process:
run: r:latest analysis/process.R
needs: [generate_study_population_covid_primarycare, generate_study_population_covid_SGSS,generate_study_population_covid_admission,generate_study_population_covid_death_ons,generate_study_population_covid_death_cpns]
outputs:
highly_sensitive:
cohort1.1: output/case_covid_infection.csv
cohort1.2: output/control_covid_infection.csv
cohort2: output/case_covid_admission.csv
cohort3: output/case_covid_icu_death.csv
matching:
run: python:latest python analysis/matching_case_control.py
needs: [generate_study_population, process]
outputs:
moderately_sensitive:
matching_report1: output/matching_report_general_population_infection.txt
matching_report2: output/matching_report_infection_hosp.txt
matching_report3: output/matching_report_hosp_icu_death.txt
highly_sensitive:
combined1: output/matched_combined_general_population_infection.csv
combined2: output/matched_combined_infection_hosp.csv
combined3: output/matched_combined_hosp_icu_death.csv
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 22:34:07
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job information
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- brit_cc_study
- Requested by
- Ya-Ting Yang
- Branch
- case_control_AB_covid
- Force run dependencies
- No
- Git commit hash
- 3caff41
- Requested actions
-
-
generate_study_population
-
generate_study_population_covid_primarycare
-
generate_study_population_covid_SGSS
-
generate_study_population_covid_admission
-
generate_study_population_covid_death_ons
-
generate_study_population_covid_death_cpns
-
Code comparison
Compare the code used in this Job Request
- No previous Job Request available for comparison