Job request: 13024
- Organisation:
 - Bennett Institute
 - Workspace:
 - appointments-short-data-report
 - ID:
 - zddxqy7i2fi256rw
 
This page shows the technical details of what happened when the authorised researcher Iain Dillingham requested one or more actions to be run against real patient data within a secure environment.
By cross-referencing the list of jobs with the pipeline section below, you can infer what security level the outputs were written to.
The output security levels are:
- 
                highly_sensitive
                
- Researchers can never directly view these outputs
 - Researchers can only request code is run against them
 
 - 
                moderately_sensitive
                
- Can be viewed by an approved researcher by logging into a highly secure environment
 - These are the only outputs that can be requested for public release via a controlled output review service.
 
 
Jobs
- 
                
- Job identifier:
 - 
                    
                    
ie4xulxfx54ndc7a 
 - 
                
- Job identifier:
 - 
                    
                    
zek4t4z42myp2nvv 
 - 
                
- Job identifier:
 - 
                    
                    
caj5x46hcj2ysz72 
 - 
                
- Job identifier:
 - 
                    
                    
oof2mhibt26ewkju 
 - 
                
- Job identifier:
 - 
                    
                    
atg7hdnk2mjmvuu7 
 - 
                
- Job identifier:
 - 
                    
                    
is6a2vfa2r2cqqya 
 - 
                
- Job identifier:
 - 
                    
                    
42zckn3ibnn3ws5v 
 - 
                
- Job identifier:
 - 
                    
                    
d2wc7zbeaj7xn5v6 
 - 
                
- Job identifier:
 - 
                    
                    
x2qufmwniuy37hnn 
 
Pipeline
Show project.yaml
version: "3.0"
expectations:
  population_size: 1000
actions:
  query_distinct_values:
    run: >
      sqlrunner:latest
        --output output/distinct_values/rows.csv
        analysis/distinct_values/query.sql
    outputs:
      highly_sensitive:
        rows: output/distinct_values/rows.csv
  round_distinct_values:
    needs: [query_distinct_values]
    run: >
      python:latest python -m analysis.actions.round
        --output output/distinct_values/results.csv
        output/distinct_values/rows.csv
        --column-names num_distinct_values num_values
    outputs:
      moderately_sensitive:
        results: output/distinct_values/results.csv
  query_date_range:
    run: >
      sqlrunner:latest
        --output output/date_range/rows.csv
        analysis/date_range/query.sql
    outputs:
      highly_sensitive:
        rows: output/date_range/rows.csv
  wrangle_date_range:
    needs: [query_date_range]
    run: >
      python:latest python -m analysis.date_range.wrangle
    outputs:
      moderately_sensitive:
        results: output/date_range/results.csv
  query_num_rows_by_month:
    run: >
      sqlrunner:latest
        --output output/num_rows_by_month/rows.csv
        analysis/num_rows_by_month/query.sql
    outputs:
      highly_sensitive:
        rows: output/num_rows_by_month/rows.csv
  round_num_rows_by_month:
    needs: [query_num_rows_by_month]
    run: >
      python:latest python -m analysis.actions.round
        --output output/num_rows_by_month/results.csv
        output/num_rows_by_month/rows.csv
        --column-names num_rows
    outputs:
      moderately_sensitive:
        results: output/num_rows_by_month/results.csv
  query_lead_time:
    run: >
      sqlrunner:latest
        --output output/lead_time/rows.csv
        analysis/lead_time/query.sql
    outputs:
      highly_sensitive:
        rows: output/lead_time/rows.csv
  round_lead_time:
    needs: [query_lead_time]
    run: >
      python:latest python -m analysis.actions.round
        --output output/lead_time/results.csv
        output/lead_time/rows.csv
        --column-names frequency
    outputs:
      moderately_sensitive:
        results: output/lead_time/results.csv
  make_html_reports:
    # --execute
    #   execute notebooks before converting them to HTML reports
    # --no-input
    #   exclude input cells and output prompts from HTML reports
    # --to=html
    #   convert notebooks to HTML reports (not e.g. to PDF reports)
    # --template basic
    #   use the basic (unstyled) template for HTML reports
    # --output-dir=output/reports
    #   write HTML reports to the `output/reports` directory
    run: >
      python:latest jupyter nbconvert
        --execute
        --no-input
        --to=html
        --template basic
        --output-dir=output/reports
        analysis/reports/*.ipynb
    needs:
      - round_distinct_values
      - wrangle_date_range
      - round_num_rows_by_month
      - round_lead_time
    outputs:
      moderately_sensitive:
        reports: output/reports/*.html
Timeline
- 
  
    
  
  
Created:
 - 
  
    
  
  
Started:
 - 
  
    
  
  
Finished:
 - 
  
  
Runtime: 00:09:58
 
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job request
- Status
 - 
            Succeeded
 - Backend
 - TPP
 - Workspace
 - appointments-short-data-report
 - Requested by
 - Iain Dillingham
 - Branch
 - main
 - Force run dependencies
 - Yes
 - Git commit hash
 - 979103a
 - Requested actions
 - 
            
- 
                  
run_all 
 - 
                  
 
Code comparison
Compare the code used in this job request