Job request: 22620
- Organisation:
- PrescQIPP
- Workspace:
- the_effects_of_covid-19_on_doac_prescribing
- ID:
- samo3wqnitejfney
This page shows the technical details of what happened when the authorised researcher Rachel Seeley requested one or more actions to be run against real patient data within a secure environment.
By cross-referencing the list of jobs with the pipeline section below, you can infer what security level the outputs were written to.
The output security levels are:
-
highly_sensitive
- Researchers can never directly view these outputs
- Researchers can only request code is run against them
-
moderately_sensitive
- Can be viewed by an approved researcher by logging into a highly secure environment
- These are the only outputs that can be requested for public release via a controlled output review service.
Jobs
-
- Job identifier:
-
iox4tztdwlu6c3gr
-
- Job identifier:
-
sp3id4xsrke6wc65
-
- Job identifier:
-
uhrpg5n5v6elo3in
-
- Job identifier:
-
qxenragbt7yiyg44
-
- Job identifier:
-
rtqnhepq7dhxtk5x
-
- Job identifier:
-
rpnfvxwixqcvr4bb
Pipeline
Show project.yaml
version: "3.0"
expectations:
population_size: 10000
actions:
generate_study_population_1:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2018-01-01 to 2019-12-01 by month" --output-dir=output --output-format=feather
outputs:
highly_sensitive:
cohort: output/input*.feather
generate_study_population_2:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2020-01-01 to 2022-06-01 by month" --output-dir=output --output-format=feather
outputs:
highly_sensitive:
cohort: output/input_*.feather
generate_study_population_3:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2022-07-01 to 2024-03-01 by month" --output-dir=output --output-format=feather
outputs:
highly_sensitive:
cohort: output/inp*.feather
generate_dose:
run: python:latest python analysis/calculate_dose_scaled_back.py
needs: [generate_study_population_1, generate_study_population_2, generate_study_population_3]
outputs:
highly_sensitive:
cohort: output/inpu*.feather
filter_population:
run: python:latest python analysis/filter_population.py
needs: [generate_dose]
outputs:
highly_sensitive:
cohort: output/filtered/input*.feather
generate_measures:
run: cohortextractor:latest generate_measures --study-definition study_definition --output-dir=output/filtered
needs: [filter_population]
outputs:
moderately_sensitive:
measure_csv: output/filtered/measure_*_rate.csv
generate_plots:
run: python:v2 python analysis/report.py
needs: [generate_measures]
outputs:
moderately_sensitive:
plots: output/filtered/*.png
tables: output/filtered/*.csv
# to be run localy
generate_notebook_local:
run: jupyter:latest jupyter nbconvert /workspace/analysis/report_local.ipynb --execute --to html --template basic --output-dir=/workspace/released_outputs --ExecutePreprocessor.timeout=86400 --no-input
needs: [generate_measures]
outputs:
moderately_sensitive:
notebook: released_outputs/report_local.html
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 21:16:34
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job request
- Status
-
Succeeded
- Backend
- TPP
- Requested by
- Rachel Seeley
- Branch
- main
- Force run dependencies
- No
- Git commit hash
- 7ae4c25
- Requested actions
-
-
generate_study_population_3 -
generate_dose -
filter_population -
generate_measures -
generate_plots -
generate_notebook_local
-
Code comparison
Compare the code used in this job request