Job request: 15715
- Organisation:
- King's College London
- Workspace:
- gout
- ID:
- ryst7dluumhxdptd
This page shows the technical details of what happened when the authorised researcher Mark Russell requested one or more actions to be run against real patient data within a secure environment.
By cross-referencing the list of jobs with the pipeline section below, you can infer what security level the outputs were written to.
The output security levels are:
-
highly_sensitive
- Researchers can never directly view these outputs
- Researchers can only request code is run against them
-
moderately_sensitive
- Can be viewed by an approved researcher by logging into a highly secure environment
- These are the only outputs that can be requested for public release via a controlled output review service.
Jobs
-
- Job identifier:
-
6jw4ndacddf26awm
-
- Job identifier:
-
w2h7obd3f6lbjz3z
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 100000
actions:
generate_study_population:
run: cohortextractor:latest generate_cohort --study-definition study_definition --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/input.csv.gz
generate_study_population_count:
run: cohortextractor:latest generate_cohort --study-definition study_definition_count --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/input_count.csv.gz
summary_counts:
run: stata-mp:latest analysis/002_summary_counts.do
needs: [generate_study_population_count]
outputs:
highly_sensitive:
log1: logs/summary_counts.log
generate_study_population_allpts:
run: cohortextractor:latest generate_cohort --study-definition study_definition_allpts --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/input_allpts.csv.gz
generate_study_population_2015:
run: cohortextractor:latest generate_cohort --study-definition study_definition_year --index-date-range "2015-07-01" --output-dir=output/measures --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/measures/input_year_2015-07-01.csv.gz
generate_study_population_2016:
run: cohortextractor:latest generate_cohort --study-definition study_definition_year --index-date-range "2016-07-01" --output-dir=output/measures --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/measures/input_year_2016-07-01.csv.gz
generate_study_population_2017:
run: cohortextractor:latest generate_cohort --study-definition study_definition_year --index-date-range "2017-07-01" --output-dir=output/measures --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/measures/input_year_2017-07-01.csv.gz
generate_study_population_2018:
run: cohortextractor:latest generate_cohort --study-definition study_definition_year --index-date-range "2018-07-01" --output-dir=output/measures --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/measures/input_year_2018-07-01.csv.gz
generate_study_population_2019:
run: cohortextractor:latest generate_cohort --study-definition study_definition_year --index-date-range "2019-07-01" --output-dir=output/measures --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/measures/input_year_2019-07-01.csv.gz
generate_study_population_2020:
run: cohortextractor:latest generate_cohort --study-definition study_definition_year --index-date-range "2020-07-01" --output-dir=output/measures --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/measures/input_year_2020-07-01.csv.gz
generate_study_population_2021:
run: cohortextractor:latest generate_cohort --study-definition study_definition_year --index-date-range "2021-07-01" --output-dir=output/measures --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/measures/input_year_2021-07-01.csv.gz
generate_study_population_2022:
run: cohortextractor:latest generate_cohort --study-definition study_definition_year --index-date-range "2022-07-01" --output-dir=output/measures --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/measures/input_year_2022-07-01.csv.gz
generate_measures:
run: cohortextractor:latest generate_measures --study-definition study_definition_year --output-dir=output/measures
needs: [generate_study_population_2015, generate_study_population_2016, generate_study_population_2017, generate_study_population_2018, generate_study_population_2019, generate_study_population_2020, generate_study_population_2021, generate_study_population_2022]
outputs:
moderately_sensitive:
measure_csv: output/measures/measure_*.csv
create_cohorts_allpts:
run: stata-mp:latest analysis/001_define_covariates_allpts.do
needs: [generate_study_population_allpts]
outputs:
highly_sensitive:
log1: logs/cleaning_dataset_allpts.log
data1: output/data/file_gout_allpts.dta
create_cohorts:
run: stata-mp:latest analysis/000_define_covariates.do
needs: [generate_study_population, generate_measures]
outputs:
highly_sensitive:
log1: logs/cleaning_dataset.log
data1: output/data/file_gout_all.dta
data2: output/data/gout_prevalence_sex_long.dta
data3: output/data/gout_incidence_sex_long.dta
data4: output/data/gout_admissions_sex_long.dta
run_baseline_tables_allpts:
run: stata-mp:latest analysis/101_baseline_characteristics_allpts.do
needs: [create_cohorts_allpts]
outputs:
moderately_sensitive:
log1: logs/descriptive_tables_allpts.log
doc1: output/tables/baseline_allpts.csv
run_baseline_tables:
run: stata-mp:latest analysis/100_baseline_characteristics.do
needs: [create_cohorts]
outputs:
moderately_sensitive:
log1: logs/descriptive_tables.log
doc1: output/tables/incidence_year_rounded.csv
doc2: output/tables/incidence_month_rounded.csv
doc3: output/tables/prevalance_year_rounded.csv
doc4: output/tables/incidence_admission_year_rounded.csv
doc6: output/tables/baseline_bydiagnosis.csv
doc7: output/tables/baseline_byyear.csv
doc8: output/tables/ult6m_byyear.csv
doc9: output/tables/ult6m_byregion.csv
doc10: output/tables/urate6m_byyear.csv
doc11: output/tables/urate6m_byregion.csv
figure1: output/figures/incidence_year_rounded.svg
figure2: output/figures/incidence_month_rounded.svg
figure3: output/figures/prevalance_year_rounded.svg
figure4: output/figures/incidence_admission_year_rounded.svg
run_itsa_models:
run: stata-mp:latest analysis/200_itsa_models.do
needs: [create_cohorts]
outputs:
moderately_sensitive:
log1: logs/itsa_models.log
figure1: output/figures/ITSA_ult_newey.svg
figure2: output/figures/ITSA_360_newey.svg
# doc1: output/tables/gp_to_appt_ITSA_table.csv
run_box_plots:
run: stata-mp:latest analysis/300_box_plots.do
needs: [create_cohorts]
outputs:
moderately_sensitive:
log1: logs/box_plots.log
figure 1: output/figures/regional_ult_overall.svg
figure 2: output/figures/regional_ult_2019.svg
figure 3: output/figures/regional_ult_2020.svg
figure 4: output/figures/regional_ult_2021.svg
figure 5: output/figures/regional_ult_2022.svg
figure 6: output/figures/regional_ult_merged.svg
# run_redacted_tables:
# run: stata-mp:latest analysis/400_redacted_tables.do
# needs: [create_cohorts]
# outputs:
# moderately_sensitive:
# log1: logs/redacted_tables.log
# doc1: output/tables/table_1_rounded_bydiag.csv
# doc2: output/tables/table_mean_bydiag_rounded.csv
# doc3: output/tables/table_median_bydiag_rounded.csv
# doc4: output/tables/table_median_bydiag_rounded_to21.csv
# doc5: output/tables/ITSA_tables_appt_delay_rounded.csv
# doc6: output/tables/ITSA_tables_csdmard_delay_rounded.csv
# doc7: output/tables/drug_byyearanddisease_rounded.csv
# doc8: output/tables/first_csdmard_rounded.csv
# doc9: output/tables/drug_byyearandregion_rounded.csv
# doc10: output/tables/referral_byregion_rounded.csv
# doc11: output/tables/consultation_medium_rounded.csv
# doc12: output/tables/table_median_bydiag_rounded_to21_report.csv
# doc13: output/tables/first_csdmard_rounded_report.csv
# run_redacted_tables_allpts:
# run: stata-mp:latest analysis/401_redacted_tables_allpts.do
# needs: [create_cohorts_allpts]
# outputs:
# moderately_sensitive:
# log1: logs/redacted_tables_allpts.log
# doc1: output/tables/table_1_rounded_allpts.csv
# convert_image_formats:
# run: python:latest python analysis/convert_images.py --input_dir output/figures --output_dir output/figures
# needs: [run_baseline_tables, run_itsa_models, run_box_plots, run_redacted_tables]
# outputs:
# moderately_sensitive:
# figures: output/figures/*.png
# generate_notebook:
# run: jupyter:latest jupyter nbconvert /workspace/analysis/report.ipynb --execute --to html --template basic --output-dir=/workspace/output --ExecutePreprocessor.timeout=86400 --no-input
# needs: [convert_image_formats,run_baseline_tables, run_itsa_models, run_box_plots, run_redacted_tables]
# outputs:
# moderately_sensitive:
# notebook: output/report.html
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 00:16:58
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Code comparison
Compare the code used in this job request