Job request: 25439
- Organisation:
- King's College London
- Workspace:
- inflammatory_rheum
- ID:
- h2kixynzirm277z2
This page shows the technical details of what happened when the authorised researcher Mark Russell requested one or more actions to be run against real patient data within a secure environment.
By cross-referencing the list of jobs with the pipeline section below, you can infer what security level the outputs were written to.
The output security levels are:
-
highly_sensitive
- Researchers can never directly view these outputs
- Researchers can only request code is run against them
-
moderately_sensitive
- Can be viewed by an approved researcher by logging into a highly secure environment
- These are the only outputs that can be requested for public release via a controlled output review service.
Jobs
-
- Job identifier:
-
nsh4iez3pxkz22s6
-
- Job identifier:
-
rjme2bvrq6hyh4ov
-
- Job identifier:
-
lcxc64gvw7mkvfim
-
- Job identifier:
-
2i5ez3dacpb7sq5z
-
- Job identifier:
-
pyquzbciz6g6p67y
-
- Job identifier:
-
tsvzkqbunad4sn47
-
- Job identifier:
-
xlqapyiod2josnmg
-
- Job identifier:
-
y2k5oolcfhiejsl5
-
- Job identifier:
-
wwa5752psppt3v7o
-
- Job identifier:
-
vvuvkydgp6ascali
-
- Job identifier:
-
tuthz2kp42jkr2ky
-
- Job identifier:
-
4ew5sovntglhljkj
-
- Job identifier:
-
7mns4d4xgvzmqmyc
-
- Job identifier:
-
gnn43g4qlrkrprae
-
- Job identifier:
-
dwblkwmmdqsagzi3
-
- Job identifier:
-
g7gmab35e4ued3fn
Pipeline
Show project.yaml
version: '4.0'
actions:
generate_dataset_incidence:
run: ehrql:v1 generate-dataset analysis/dataset_definition_incidence.py --output output/dataset_incidence.csv
outputs:
highly_sensitive:
cohort: output/dataset_incidence.csv
generate_dataset_incidence_ref:
run: ehrql:v1 generate-dataset analysis/dataset_definition_incidence_ref.py --output output/dataset_incidence_ref.csv
outputs:
highly_sensitive:
cohort: output/dataset_incidence_ref.csv
generate_dataset_eia:
run: ehrql:v1 generate-dataset analysis/dataset_definition_eia.py --output output/dataset_eia.csv
needs: [generate_dataset_incidence]
outputs:
highly_sensitive:
cohort: output/dataset_eia.csv
generate_measures_2016:
run: ehrql:v1 generate-measures analysis/dataset_definition_incidence_measures.py
--output output/measures/measures_incidence_2016.csv
--
--start-date "2016-04-01"
--intervals 12
needs: [generate_dataset_incidence]
outputs:
moderately_sensitive:
measure_csv: output/measures/measures_incidence_2016.csv
generate_measures_2017:
run: ehrql:v1 generate-measures analysis/dataset_definition_incidence_measures.py
--output output/measures/measures_incidence_2017.csv
--
--start-date "2017-04-01"
--intervals 12
needs: [generate_dataset_incidence]
outputs:
moderately_sensitive:
measure_csv: output/measures/measures_incidence_2017.csv
generate_measures_2018:
run: ehrql:v1 generate-measures analysis/dataset_definition_incidence_measures.py
--output output/measures/measures_incidence_2018.csv
--
--start-date "2018-04-01"
--intervals 12
needs: [generate_dataset_incidence]
outputs:
moderately_sensitive:
measure_csv: output/measures/measures_incidence_2018.csv
generate_measures_2019:
run: ehrql:v1 generate-measures analysis/dataset_definition_incidence_measures.py
--output output/measures/measures_incidence_2019.csv
--
--start-date "2019-04-01"
--intervals 12
needs: [generate_dataset_incidence]
outputs:
moderately_sensitive:
measure_csv: output/measures/measures_incidence_2019.csv
generate_measures_2020:
run: ehrql:v1 generate-measures analysis/dataset_definition_incidence_measures.py
--output output/measures/measures_incidence_2020.csv
--
--start-date "2020-04-01"
--intervals 12
needs: [generate_dataset_incidence]
outputs:
moderately_sensitive:
measure_csv: output/measures/measures_incidence_2020.csv
generate_measures_2021:
run: ehrql:v1 generate-measures analysis/dataset_definition_incidence_measures.py
--output output/measures/measures_incidence_2021.csv
--
--start-date "2021-04-01"
--intervals 12
needs: [generate_dataset_incidence]
outputs:
moderately_sensitive:
measure_csv: output/measures/measures_incidence_2021.csv
generate_measures_2022:
run: ehrql:v1 generate-measures analysis/dataset_definition_incidence_measures.py
--output output/measures/measures_incidence_2022.csv
--
--start-date "2022-04-01"
--intervals 12
needs: [generate_dataset_incidence]
outputs:
moderately_sensitive:
measure_csv: output/measures/measures_incidence_2022.csv
generate_measures_2023:
run: ehrql:v1 generate-measures analysis/dataset_definition_incidence_measures.py
--output output/measures/measures_incidence_2023.csv
--
--start-date "2023-04-01"
--intervals 12
needs: [generate_dataset_incidence]
outputs:
moderately_sensitive:
measure_csv: output/measures/measures_incidence_2023.csv
generate_measures_2024:
run: ehrql:v1 generate-measures analysis/dataset_definition_incidence_measures.py
--output output/measures/measures_incidence_2024.csv
--
--start-date "2024-04-01"
--intervals 12
needs: [generate_dataset_incidence]
outputs:
moderately_sensitive:
measure_csv: output/measures/measures_incidence_2024.csv
incidence_cleaning:
run: stata-mp:latest analysis/001_incidence_cleaning.do
needs: [generate_dataset_incidence, generate_measures_2016, generate_measures_2017, generate_measures_2018, generate_measures_2019, generate_measures_2020, generate_measures_2021, generate_measures_2022, generate_measures_2023, generate_measures_2024]
outputs:
moderately_sensitive:
log1: logs/incidence_cleaning.log
table1: output/tables/incidence_rates_rounded.csv
table2: output/tables/incidence_rates_rounded_subgroups.csv
tabke3: output/tables/baseline_table_rounded.csv
incidence_graphs:
run: stata-mp:latest analysis/002_incidence_graphs.do
needs: [incidence_cleaning]
outputs:
moderately_sensitive:
log1: logs/incidence_graphs.log
figure1: output/figures/inc_rate_*.svg
figure2: output/figures/inc_comp_*.svg
figure3: output/figures/adj_sex_*.svg
figure4: output/figures/unadj_age_*.svg
figure5: output/figures/unadj_imd_*.svg
figure6: output/figures/unadj_ethn_*.svg
reference_cleaning:
run: stata-mp:latest analysis/003_reference_cleaning.do
needs: [generate_dataset_incidence_ref]
outputs:
moderately_sensitive:
log1: logs/reference_cleaning.log
table1: output/tables/reference_table_rounded.csv
run_sarima:
run: r:latest analysis/200_sarima.R
needs: [incidence_cleaning]
outputs:
moderately_sensitive:
log1: logs/sarima_log.txt
figure1: output/figures/auto_residuals_*.svg
figure2: output/figures/obs_pred_*.svg
table1: output/tables/change_incidence_byyear.csv
# eia_cleaning:
# run: stata-mp:latest analysis/100_eia_cleaning.do
# needs: [generate_dataset_incidence, generate_dataset_eia]
# outputs:
# highly_sensitive:
# log1: logs/eia_dataset.log
# data1: output/data/file_eia_all.dta
# run_box_plots:
# run: stata-mp:latest analysis/300_box_plots.do
# needs: [eia_cleaning]
# outputs:
# moderately_sensitive:
# log1: logs/box_plots.log
# figure 1: output/figures/regional_qs2_bar_*.svg
# figure 2: output/figures/regional_csdmard_bar_*.svg
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 32:06:39
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job request
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- inflammatory_rheum
- Requested by
- Mark Russell
- Branch
- main
- Force run dependencies
- Yes
- Git commit hash
- b74162a
- Requested actions
-
-
run_all
-
Code comparison
Compare the code used in this job request