Skip to content

Job request: 6946

Organisation:
University of Bristol
Workspace:
covid-ve-change-over-time--previous-infection
ID:
piolh5j3wlcjsxwi

This page shows the technical details of what happened when the authorised researcher Elsie Horne requested one or more actions to be run against real patient data within a secure environment.

By cross-referencing the list of jobs with the pipeline section below, you can infer what security level the outputs were written to.

The output security levels are:

  • highly_sensitive
    • Researchers can never directly view these outputs
    • Researchers can only request code is run against them
  • moderately_sensitive
    • Can be viewed by an approved researcher by logging into a highly secure environment
    • These are the only outputs that can be requested for public release via a controlled output review service.

Jobs

Pipeline

Show project.yaml
version: '3.0'

expectations:

  population_size: 100000

actions:

  ## # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 
  ## DO NOT EDIT project.yaml or study_definition_1-6.py DIRECTLY 
  ## These files are created by create-project.R 
  ## Edit and run create-project.R to update the project.yaml 
  ## Edit study_definition_k.py and run create-project.R to update 
  ## study_definition_1-6.py 
  ## # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 
  ## #################################### 
  ## study definition 
  ## #################################### 
  ## generate dummy data for study_definition 

  dummy_data_vax:
    run: r:latest analysis/dummy_data_vax.R
    outputs:
      moderately_sensitive:
        dummy_data: analysis/dummy_data_vax.feather

  ## study definition 

  generate_study_population:
    run: cohortextractor:latest generate_cohort --study-definition study_definition_vax
      --output-format feather
    dummy_data_file: analysis/dummy_data_vax.feather
    needs:
    - dummy_data_vax
    outputs:
      highly_sensitive:
        cohort: output/input_vax.feather

  ## #################################### 
  ## preprocessing 
  ## #################################### 
  ## process data from study_definition 

  data_input_process:
    run: r:latest analysis/preprocess/data_input_process.R
    needs:
    - dummy_data_vax
    - generate_study_population
    outputs:
      highly_sensitive:
        data_wide_vax_dates: output/data/data_wide_vax_dates.rds
        data_processed: output/data/data_processed.rds
      moderately_sensitive:
        data_properties: output/tables/data_*_tabulate.txt

  ## apply eligiblity criteria from boxes a and b 

  data_eligible_ab:
    run: r:latest analysis/preprocess/data_eligible_ab.R
    needs:
    - data_input_process
    outputs:
      highly_sensitive:
        data_eligible_a: output/data/data_eligible_a.rds
        data_eligible_b: output/data/data_eligible_b.rds
      moderately_sensitive:
        eligibility_count_ab: output/tables/eligibility_count_ab.csv
        group_age_ranges: output/lib/group_age_ranges.csv

  ## #################################### 
  ## second_vax_period 
  ## #################################### 
  ## identify second vaccination time periods 
  ## create dataset for identifying second vaccination time periods 

  data_2nd_vax_dates:
    run: r:latest analysis/second_vax_period/data_2nd_vax_dates.R
    needs:
    - data_input_process
    - data_eligible_ab
    outputs:
      highly_sensitive:
        data_vax_plot: output/second_vax_period/data/data_vax_plot.rds
        second_vax_period_dates_rds: output/second_vax_period/data/second_vax_period_dates.rds
      moderately_sensitive:
        second_vax_period_dates_txt: output/second_vax_period/tables/second_vax_period_dates.txt

  ## plot second vaccination time periods 

  plot_2nd_vax_dates:
    run: r:latest analysis/second_vax_period/plot_2nd_vax_dates.R
    needs:
    - data_eligible_ab
    - data_2nd_vax_dates
    outputs:
      moderately_sensitive:
        plots_by_region: output/second_vax_period/images/plot_by_region_*.png

  ## apply eligiblity criteria from boxes c, d and e 

  data_eligible_cde:
    run: r:latest analysis/preprocess/data_eligible_cde.R
    needs:
    - data_input_process
    - data_eligible_ab
    - data_2nd_vax_dates
    outputs:
      highly_sensitive:
        data_eligible_e_vax: output/data/data_eligible_e_vax.rds
        data_eligible_e_unvax: output/data/data_eligible_e_unvax.rds
        data_eligible_e: output/data/data_eligible_e.csv
      moderately_sensitive:
        eligibility_count_cde: output/tables/eligibility_count_cde.csv

  ## #################################### 
  ## study definition ever and k 
  ## #################################### 
  ## study definition ever 

  generate_ever_data:
    run: cohortextractor:latest generate_cohort --study-definition study_definition_ever
      --output-format feather
    needs:
    - data_eligible_cde
    outputs:
      highly_sensitive:
        cohort: output/input_ever.feather

  ## explore positive tests around COVID-19 hospital admissions 

  covidadmitted_postest_eda:
    run: r:latest analysis/eda/covidadmitted_postest.R
    needs:
    - generate_ever_data
    outputs:
      moderately_sensitive:
        covidadmitted_postest_report: output/eda/covidadmitted_postest.html

Timeline

  • Created:

  • Started:

  • Finished:

  • Runtime: 01:33:02

These timestamps are generated and stored using the UTC timezone on the TPP backend.

Job request

Status
Succeeded
Backend
TPP
Requested by
Elsie Horne
Branch
previous-infection
Force run dependencies
No
Git commit hash
d3a3003
Requested actions
  • generate_ever_data

Code comparison

Compare the code used in this job request