Skip to content

Job request: 9349

Organisation:
University of Bristol
Workspace:
waning-ve-2dose-1year-main
ID:
qxqoihaoblvqngv7

This page shows the technical details of what happened when the authorised researcher Elsie Horne requested one or more actions to be run against real patient data in the project, within a secure environment.

By cross-referencing the list of jobs with the pipeline section below, you can infer what security level various outputs were written to. Researchers can never directly view outputs marked as highly_sensitive ; they can only request that code runs against them. Outputs marked as moderately_sensitive can be viewed by an approved researcher by logging into a highly secure environment. Only outputs marked as moderately_sensitive can be requested for release to the public, via a controlled output review service.

Jobs

  • Action:
    check_fu
    Status:
    Status: Failed
    Job identifier:
    qqdz7sljum4bnyvc

Pipeline

Show project.yaml
version: '3.0'

expectations:

  population_size: 100000

actions:

  ## # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 
  ## DO NOT EDIT project.yaml 
  ## This file is created by create_project.R 
  ## Edit and run create_project.R to update the project.yaml 
  ## # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 
  ## #################################### 
  ## study definition 
  ## #################################### 
  ## generate dummy data for study_definition 

  dummy_data_vax:
    run: r:latest analysis/dummy_data_vax.R
    outputs:
      moderately_sensitive:
        dummy_data: analysis/dummy_data_vax.feather

  ## study definition 

  generate_study_population:
    run: cohortextractor:latest generate_cohort --study-definition study_definition_vax
      --output-format feather
    dummy_data_file: analysis/dummy_data_vax.feather
    needs:
    - dummy_data_vax
    outputs:
      highly_sensitive:
        cohort: output/input_vax.feather

  ## #################################### 
  ## preprocessing 
  ## #################################### 
  ## process data from study_definition 

  data_input_process:
    run: r:latest analysis/preprocess/data_input_process.R
    needs:
    - dummy_data_vax
    - generate_study_population
    outputs:
      highly_sensitive:
        data_wide_vax_dates: output/data/data_wide_vax_dates.rds
        data_processed: output/data/data_processed.rds
      moderately_sensitive:
        data_properties: output/tables/data_*_tabulate.txt

  ## apply eligiblity criteria from boxes a and b 

  data_eligible_ab:
    run: r:latest analysis/preprocess/data_eligible_ab.R
    needs:
    - data_input_process
    outputs:
      highly_sensitive:
        data_eligible_a: output/data/data_eligible_a.rds
        data_eligible_b: output/data/data_eligible_b.rds
      moderately_sensitive:
        eligibility_count_ab: output/tables/eligibility_count_ab.csv
        group_age_ranges: output/lib/group_age_ranges.csv

  ## #################################### 
  ## second_vax_period 
  ## #################################### 
  ## identify second vaccination time periods 
  ## create dataset for identifying second vaccination time periods 

  data_2nd_vax_dates:
    run: r:latest analysis/second_vax_period/data_2nd_vax_dates.R
    needs:
    - data_input_process
    - data_eligible_ab
    outputs:
      highly_sensitive:
        data_vax_plot: output/second_vax_period/data/data_vax_plot.rds
        second_vax_period_dates_rds: output/second_vax_period/data/second_vax_period_dates.rds
      moderately_sensitive:
        second_vax_period_dates_txt: output/second_vax_period/tables/second_vax_period_dates.txt

  ## plot second vaccination time periods 

  plot_2nd_vax_dates:
    run: r:latest analysis/second_vax_period/plot_2nd_vax_dates.R
    needs:
    - data_eligible_ab
    - data_2nd_vax_dates
    outputs:
      moderately_sensitive:
        plots_by_region: output/second_vax_period/images/plot_by_region_*.png
        plots_by_region_data: output/second_vax_period/images/plot_by_region_*.txt

  ## apply eligiblity criteria from boxes c, d and e 

  data_eligible_cde:
    run: r:latest analysis/preprocess/data_eligible_cde.R
    needs:
    - data_input_process
    - data_eligible_ab
    - data_2nd_vax_dates
    outputs:
      highly_sensitive:
        data_eligible_e_vax: output/data/data_eligible_e_vax.rds
        data_eligible_e_unvax: output/data/data_eligible_e_unvax.rds
        data_eligible_e: output/data/data_eligible_e.csv
      moderately_sensitive:
        eligibility_count_cde: output/tables/eligibility_count_cde.csv

  ## #################################### 
  ## study definition covs 
  ## #################################### 

  generate_covs_data:
    run: cohortextractor:latest generate_cohort --study-definition study_definition_covs
      --output-format feather
    needs:
    - data_eligible_cde
    outputs:
      highly_sensitive:
        cohort: output/input_covs.feather

  ## #################################### 
  ## process covariates data 
  ## #################################### 
  ## (includes anytest_date) 

  data_covariates_process:
    run: r:latest analysis/preprocess/data_covariates_process.R
    needs:
    - data_input_process
    - data_eligible_cde
    - generate_covs_data
    outputs:
      highly_sensitive:
        data_covariates: output/data/data_all.rds
      moderately_sensitive:
        data_min_max_fu_csv: output/lib/data_min_max_fu.csv

  ## #################################### 
  ## subsequent vaccination 
  ## #################################### 
  ## plot cumulative incidence of subsequent vaccination 

  plot_cumulative_incidence:
    run: r:latest analysis/subsequent_vax/plot_cumulative_incidence.R
    needs:
    - data_covariates_process
    outputs:
      moderately_sensitive:
        ci_vax: output/subsequent_vax/images/ci_vax.png
        survtable: output/subsequent_vax/tables/survtable_redacted.csv

  ## #################################### 
  ## table 1 for report 
  ## #################################### 
  ## create table 1 for all and for each subgroup 

  table1:
    run: r:latest analysis/report/table1.R
    needs:
    - data_eligible_ab
    - data_eligible_cde
    - data_covariates_process
    outputs:
      moderately_sensitive:
        eligibility_count_p1: output/tables/eligibility_count_p1.csv
        eligibility_count_all: output/tables/eligibility_count_all.csv
        table_csv: output/report/tables/table1_*_REDACTED.csv
        table_html: output/report/tables/table1_*_REDACTED.html

  ## #################################### 
  ## process time to event data 
  ## #################################### 
  ## process tte data 

  data_tte_process_BNT162b2:
    run: r:latest analysis/comparisons/data_tte_process.R BNT162b2
    needs:
    - data_covariates_process
    outputs:
      highly_sensitive:
        data_tte_brand_outcome: output/tte/data/data_tte_BNT162b2*.rds
      moderately_sensitive:
        event_counts_csv: output/tte/data/event_counts_BNT162b2.csv
        event_counts_txt: output/tte/tables/event_counts_BNT162b2.txt

  data_tte_process_ChAdOx1:
    run: r:latest analysis/comparisons/data_tte_process.R ChAdOx1
    needs:
    - data_covariates_process
    outputs:
      highly_sensitive:
        data_tte_brand_outcome: output/tte/data/data_tte_ChAdOx1*.rds
      moderately_sensitive:
        event_counts_csv: output/tte/data/event_counts_ChAdOx1.csv
        event_counts_txt: output/tte/tables/event_counts_ChAdOx1.txt

  data_tte_process_both:
    run: r:latest analysis/comparisons/data_tte_process.R both
    needs:
    - data_covariates_process
    outputs:
      highly_sensitive:
        data_tte_brand_outcome: output/tte/data/data_tte_both*.rds
      moderately_sensitive:
        event_counts_csv: output/tte/data/event_counts_both.csv
        event_counts_txt: output/tte/tables/event_counts_both.txt

  ## check distribution of follow-up time in relation to variant dates 

  check_fu:
    run: r:latest analysis/comparisons/check_fu.R
    needs:
    - data_covariates_process
    outputs:
      moderately_sensitive:
        check_fu_plot: output/tte/images/check_fu_*.png
        check_fu_plot_data: output/tte/images/check_fu_*.txt

Timeline

  • Created:

  • Started:

  • Finished:

  • Runtime: 02:28:54

These timestamps are generated and stored using the UTC timezone on the TPP backend.

Job information

Status
Failed
Backend
TPP
Requested by
Elsie Horne
Branch
main
Force run dependencies
No
Git commit hash
ec59865
Requested actions
  • check_fu

Code comparison

Compare the code used in this Job Request