Job request: 15992
- Organisation:
- DataLab
- Workspace:
- opensafely-internal-interactive
- ID:
- f2isoh6fcxfxciin
This page shows the technical details of what happened when authorised researcher Lucy B requested one or more actions to be run against real patient data in the project, within a secure environment.
By cross-referencing the indicated Requested Actions with the
Pipeline section below, you can infer what
security level
various outputs were written to. Outputs marked as
highly_sensitive
can never be viewed directly by a researcher; they can only
request that code runs against them. Outputs marked as
moderately_sensitive
can be viewed by an approved researcher by logging into a highly
secure environment. Only outputs marked as
moderately_sensitive
can be requested for release to the public, via a controlled
output review service.
Jobs
-
- Job identifier:
-
bu4zoveis4puiezg
-
- Job identifier:
-
ltnvtomqstb6q6of
-
- Job identifier:
-
lbgwvwphal7ea7yj
-
- Job identifier:
-
vuggw5z5ab4hqdcq
-
- Job identifier:
-
qujvyrsgc5r2tokj
-
- Job identifier:
-
lrkljcsznkdaxsg5
-
- Job identifier:
-
vykrf6odejn6gged
-
- Job identifier:
-
z3lyuhjbc6snl7ws
-
- Job identifier:
-
kvko6iv7ac4qly3t
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 1000
actions:
generate_study_population_ethnicity_01GTM8RXTN1H66AGY6C1J7T01A:
run: cohortextractor:latest generate_cohort
--study-definition study_definition_ethnicity
--param end_date="2023-02-22"
--output-dir output/01GTM8RXTN1H66AGY6C1J7T01A --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/01GTM8RXTN1H66AGY6C1J7T01A/input_ethnicity.csv.gz
generate_study_population_01GTM8RXTN1H66AGY6C1J7T01A:
run: cohortextractor:latest generate_cohort
--study-definition study_definition
--param codelist_1_path="codelists/codelist_1.csv"
--param codelist_1_type="medication"
--param codelist_2_path="codelists/codelist_2.csv"
--param codelist_2_type="event"
--param codelist_1_frequency="monthly"
--param time_value="6"
--param time_scale="months"
--param time_event="before"
--param codelist_2_comparison_date="event_1_date"
--param operator="AND"
--param population="adults"
--param breakdowns="sex,age,imd"
--index-date-range="2022-08-26 to 2023-02-22 by month"
--output-dir=output/01GTM8RXTN1H66AGY6C1J7T01A
--output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/01GTM8RXTN1H66AGY6C1J7T01A/input_*.csv.gz
join_cohorts_01GTM8RXTN1H66AGY6C1J7T01A:
run: >
cohort-joiner:v0.0.38
--lhs output/01GTM8RXTN1H66AGY6C1J7T01A/input_20*.csv.gz
--rhs output/01GTM8RXTN1H66AGY6C1J7T01A/input_ethnicity.csv.gz
--output-dir output/01GTM8RXTN1H66AGY6C1J7T01A/joined
needs: [generate_study_population_01GTM8RXTN1H66AGY6C1J7T01A, generate_study_population_ethnicity_01GTM8RXTN1H66AGY6C1J7T01A]
outputs:
highly_sensitive:
cohort: output/01GTM8RXTN1H66AGY6C1J7T01A/joined/input_20*.csv.gz
generate_measures_01GTM8RXTN1H66AGY6C1J7T01A:
run: >
python:latest python analysis/measures.py
--breakdowns="sex,age,imd"
--input_dir="output/01GTM8RXTN1H66AGY6C1J7T01A/joined"
--measure="med_review"
needs: [join_cohorts_01GTM8RXTN1H66AGY6C1J7T01A]
outputs:
moderately_sensitive:
measure: output/01GTM8RXTN1H66AGY6C1J7T01A/joined/measure*rate.csv
decile_measure: output/01GTM8RXTN1H66AGY6C1J7T01A/joined/measure*rate_deciles.csv
top_5_table_01GTM8RXTN1H66AGY6C1J7T01A:
run: >
python:latest python analysis/top_5.py
--codelist-1-path="codelists/codelist_1.csv"
--codelist-2-path="codelists/codelist_2.csv"
--output-dir="output/01GTM8RXTN1H66AGY6C1J7T01A"
needs: [generate_measures_01GTM8RXTN1H66AGY6C1J7T01A]
outputs:
moderately_sensitive:
tables: output/01GTM8RXTN1H66AGY6C1J7T01A/joined/top_5*.csv
deciles_chart_01GTM8RXTN1H66AGY6C1J7T01A:
run: >
deciles-charts:v0.0.33
--input-files output/01GTM8RXTN1H66AGY6C1J7T01A/joined/measure_practice_rate_deciles.csv
--output-dir output/01GTM8RXTN1H66AGY6C1J7T01A/joined
config:
show_outer_percentiles: true
tables:
output: true
charts:
output: true
needs: [generate_measures_01GTM8RXTN1H66AGY6C1J7T01A]
outputs:
moderately_sensitive:
deciles_charts: output/01GTM8RXTN1H66AGY6C1J7T01A/joined/deciles_*.*
plot_measure_01GTM8RXTN1H66AGY6C1J7T01A:
run: >
python:latest python analysis/plot_measures.py
--breakdowns="sex,age,imd"
--output-dir output/01GTM8RXTN1H66AGY6C1J7T01A
needs: [generate_measures_01GTM8RXTN1H66AGY6C1J7T01A]
outputs:
moderately_sensitive:
measure: output/01GTM8RXTN1H66AGY6C1J7T01A/plot_measure*.png
event_counts_01GTM8RXTN1H66AGY6C1J7T01A:
run: >
python:latest python analysis/event_counts.py --input_dir="output/01GTM8RXTN1H66AGY6C1J7T01A/joined" --output_dir="output/01GTM8RXTN1H66AGY6C1J7T01A"
needs: [join_cohorts_01GTM8RXTN1H66AGY6C1J7T01A]
outputs:
moderately_sensitive:
measure: output/01GTM8RXTN1H66AGY6C1J7T01A/event_counts.json
generate_report_01GTM8RXTN1H66AGY6C1J7T01A:
run: >
python:latest python analysis/render_report.py
--report-title="DMARDs & Medication Review - OpenSAFELY Service Restoration Observatory"
--population="adults"
--breakdowns="sex,age,imd"
--codelist-1-name="DMARDs"
--codelist-2-name="Medication Review - OpenSAFELY Service Restoration Observatory"
--codelist-1-link="opensafely/dmards/2020-06-23"
--codelist-2-link="opensafely/medication-review-opensafely-service-restoration-observatory/24b50f64"
--time-value="6"
--time-scale="months"
--time-event="before"
--start-date="2022-08-26"
--end-date="2023-02-22"
--num-practices=1000
--request-id="01GTM8RXTN1H66AGY6C1J7T01A"
needs: [event_counts_01GTM8RXTN1H66AGY6C1J7T01A, deciles_chart_01GTM8RXTN1H66AGY6C1J7T01A, top_5_table_01GTM8RXTN1H66AGY6C1J7T01A, plot_measure_01GTM8RXTN1H66AGY6C1J7T01A]
outputs:
moderately_sensitive:
notebook: output/01GTM8RXTN1H66AGY6C1J7T01A/report.html
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 06:09:10
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job information
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- opensafely-internal-interactive
- Requested by
- Lucy B
- Branch
- main
- Force run dependencies
- Yes
- Git commit hash
- 7697e31
- Requested actions
-
-
run_all
-