Job request: 5550
- Organisation:
- Bennett Institute
- Workspace:
- pincer-measures-emis
- ID:
- ohnp33kdu3x6ppoa
This page shows the technical details of what happened when the authorised researcher Louis Fisher requested one or more actions to be run against real patient data in the project, within a secure environment.
By cross-referencing the list of jobs with the
pipeline section below, you can infer what
security level
various outputs were written to. Researchers can never directly
view outputs marked as
highly_sensitive
;
they can only request that code runs against them. Outputs
marked as
moderately_sensitive
can be viewed by an approved researcher by logging into a highly
secure environment. Only outputs marked as
moderately_sensitive
can be requested for release to the public, via a controlled
output review service.
Jobs
-
- Job identifier:
-
xggerph7ditxvwk4
Pipeline
Show project.yaml
version: "3.0"
expectations:
population_size: 5000
actions:
generate_study_population_1:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2019-09-01 to 2020-05-01 by month" --output-format feather
outputs:
highly_sensitive:
cohort: output/input_*.feather
generate_study_population_2:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2020-06-01 to 2021-02-01 by month" --output-format feather
outputs:
highly_sensitive:
cohort: output/input*.feather
generate_study_population_3:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2021-03-01 to 2021-09-01 by month" --output-format feather
outputs:
highly_sensitive:
cohort: output/inpu*.feather
# generate_study_population_ethnicity:
# run: cohortextractor:latest generate_cohort --study-definition study_definition_ethnicity --output-format feather
# outputs:
# highly_sensitive:
# cohort: output/input_ethnicity.feather
# join_ethnicity_region:
# run: python:latest python analysis/join_ethnicity_region.py
# needs:
# [
# generate_study_population_1,
# generate_study_population_2,
# generate_study_population_3,
# generate_study_population_ethnicity,
# ]
# outputs:
# highly_sensitive:
# cohort: output/inp*.feather
filter_population:
run: python:latest python analysis/filter_population.py
needs: [generate_study_population_1, generate_study_population_2, generate_study_population_3]
outputs:
highly_sensitive:
cohort: output/input_filtered_*.feather
calculate_numerators:
run: python:latest python analysis/calculate_numerators.py
needs: [filter_population]
outputs:
highly_sensitive:
cohort: output/indicator_e_f_*.feather
# calculate_composite_indicators:
# run: python:latest python analysis/composite_indicators.py
# needs: [calculate_numerators, filter_population]
# outputs:
# moderately_sensitive:
# counts: output/*_composite_measure.csv
generate_measures:
run: cohortextractor:latest generate_measures --study-definition study_definition --output-dir=output
needs: [filter_population]
outputs:
moderately_sensitive:
measure_csv: output/measure_*_rate.csv
# generate_measures_demographics:
# run: python:latest python analysis/calculate_measures.py
# needs: [calculate_numerators, filter_population]
# outputs:
# moderately_sensitive:
# counts: output/indicator_measure_*.csv
# measure_csv: output/measure*_rate.csv
# demographics: output/demographics_summary_*.csv
# generate_summary_counts:
# run: python:latest python analysis/summary_statistics.py
# needs:
# [
# filter_population,
# generate_measures,
# generate_measures_demographics,
# calculate_numerators,
# ]
# outputs:
# moderately_sensitive:
# patient_count: output/patient_count_*.json
# practice_count: output/practice_count_*.json
# summary: output/indicator_summary_statistics_*.json
# generate_plots:
# run: python:latest python analysis/plot_measures.py
# needs:
# [
# generate_measures,
# generate_measures_demographics,
# calculate_composite_indicators,
# ]
# outputs:
# moderately_sensitive:
# counts: output/figures/plot_*.jpeg
# combined: output/figures/combined_plot_*.png
# demographics: output/demographic_aggregates.csv
# medians: output/medians.json
# generate_notebook:
# run: jupyter:latest jupyter nbconvert /workspace/analysis/report.ipynb --execute --to html --template basic --output-dir=/workspace/output --ExecutePreprocessor.timeout=86400 --no-input
# needs: [generate_plots, generate_summary_counts]
# outputs:
# moderately_sensitive:
# notebook: output/report.html
# generate_dem_notebook:
# run: jupyter:latest jupyter nbconvert /workspace/analysis/demographic_report.ipynb --execute --to html --template basic --output-dir=/workspace/output --ExecutePreprocessor.timeout=86400 --no-input
# needs: [generate_plots]
# outputs:
# moderately_sensitive:
# notebook: output/demographic_report.html
# plot_Q1_comparisons:
# run: r:latest analysis/generate_demographic_slope_plot.R
# needs: [generate_plots]
# outputs:
# moderately_sensitive:
# plots: output/figures/SLOPE_*.png
# run_tests:
# run: python:latest python -m pytest --junit-xml=output/pytest.xml --verbose
# outputs:
# moderately_sensitive:
# log: output/pytest.xml
# test_population:
# run: python:latest python analysis/test_population.py
# needs: [filter_population]
# outputs:
# moderately_sensitive:
# counts: output/population_counts.csv
# count: output/patient_count_check.json
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 08:29:35
These timestamps are generated and stored using the UTC timezone on the EMIS backend.
Job information
- Status
-
Failed
- Backend
- EMIS
- Workspace
- pincer-measures-emis
- Requested by
- Louis Fisher
- Branch
- emis
- Force run dependencies
- No
- Git commit hash
- 165328b
- Requested actions
-
-
generate_study_population_3
-
Code comparison
Compare the code used in this Job Request