Job request: 19761
- Organisation:
- Bennett Institute
- Workspace:
- sro-measures-dashboard-updating
- ID:
- hyyhgqj5fcnijvra
This page shows the technical details of what happened when the authorised researcher Rose Higgins requested one or more actions to be run against real patient data in the project, within a secure environment.
By cross-referencing the list of jobs with the
pipeline section below, you can infer what
security level
various outputs were written to. Researchers can never directly
view outputs marked as
highly_sensitive
;
they can only request that code runs against them. Outputs
marked as
moderately_sensitive
can be viewed by an approved researcher by logging into a highly
secure environment. Only outputs marked as
moderately_sensitive
can be requested for release to the public, via a controlled
output review service.
Pipeline
Show project.yaml
version: "3.0"
expectations:
population_size: 1000
actions:
generate_study_population_population:
run: cohortextractor:latest generate_cohort --study-definition study_definition_population --index-date-range "2019-01-01 to 2023-08-01 by month" --output-dir=output --output-format=feather
outputs:
highly_sensitive:
cohort: output/input_population*.feather
join_ethnicity_population:
run: >
cohort-joiner:v0.0.46
--lhs output/input_population_20*.feather
--rhs output/input_ethnicity.feather
--output-dir output/joined
needs: [generate_study_population_population, generate_study_population_ethnicity]
outputs:
highly_sensitive:
cohort: output/joined/input_population_20*.feather
get_moved_count:
run: python:latest python analysis/population_count.py
needs: [join_ethnicity_population]
outputs:
moderately_sensitive:
text: output/move*.json
generate_study_population_1:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2019-01-01 to 2019-12-01 by month" --output-dir=output --output-format=feather
outputs:
highly_sensitive:
cohort: output/input_*.feather
generate_study_population_2:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2020-01-01 to 2020-12-01 by month" --output-dir=output --output-format=feather
outputs:
highly_sensitive:
cohort: output/input*.feather
generate_study_population_3:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2021-01-01 to 2021-06-01 by month" --output-dir=output --output-format=feather
outputs:
highly_sensitive:
cohort: output/inpu*.feather
generate_study_population_4:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2021-07-01 to 2021-12-01 by month" --output-dir=output --output-format=feather
outputs:
highly_sensitive:
cohort: output/in*.feather
generate_study_population_5:
run: cohortextractor:latest generate_cohort --study-definition study_definition --index-date-range "2022-01-01 to 2023-08-01 by month" --output-dir=output --output-format=feather
outputs:
highly_sensitive:
cohort: output/i*.feather
generate_study_population_ethnicity:
run: cohortextractor:latest generate_cohort --study-definition study_definition_ethnicity --output-dir=output --output-format=feather
outputs:
highly_sensitive:
cohort: output/input_ethnicity.feather
join_ethnicity:
run: python:latest python analysis/join_ethnicity.py
needs:
[
generate_study_population_1,
generate_study_population_2,
generate_study_population_3,
generate_study_population_4,
generate_study_population_5,
generate_study_population_ethnicity,
]
outputs:
highly_sensitive:
cohort: output/inp*.feather
get_patient_count:
run: python:latest python analysis/get_patients_counts.py
needs: [join_ethnicity]
outputs:
moderately_sensitive:
text: output/patient_count.json
get_practice_count:
run: python:latest python analysis/get_practice_count.py
needs: [join_ethnicity]
outputs:
moderately_sensitive:
text: output/practice_count.json
generate_measures:
run: cohortextractor:latest generate_measures --study-definition study_definition --output-dir=output
needs: [join_ethnicity]
outputs:
moderately_sensitive:
measure_csv: output/measure_*_rate.csv
generate_measures_cleaned:
run: python:latest python analysis/clean_measures.py
needs: [generate_measures]
outputs:
moderately_sensitive:
measure_csv: output/measure_cleaned_*.csv
generate_notebook:
run: jupyter:latest jupyter nbconvert /workspace/analysis/sentinel_measures.ipynb --execute --to html --template basic --output-dir=/workspace/output --ExecutePreprocessor.timeout=86400 --no-input
needs:
[
generate_measures,
generate_measures_cleaned,
get_practice_count,
get_patient_count,
]
outputs:
moderately_sensitive:
notebook: output/sentinel_measures.html
subplots: output/sentinel_measures_subplots.png
code_tables: output/code_table_*.csv
events_count: output/event_count.json
generate_notebook_updating:
run: jupyter:latest jupyter nbconvert /workspace/analysis/sentinel_measures_updating.ipynb --execute --to html --template basic --output-dir=/workspace/output --ExecutePreprocessor.timeout=86400 --no-input
needs:
[
generate_measures,
generate_measures_cleaned,
get_practice_count,
get_patient_count,
]
outputs:
moderately_sensitive:
notebook: output/sentinel_measures_updating.html
code_tables: output/code_table*.csv
practices: output/num_practices_included*.csv
run_tests:
run: python:latest python -m pytest --junit-xml=output/pytest.xml --verbose
outputs:
moderately_sensitive:
log: output/pytest.xml
measures_ehrql:
run: ehrql:v0 generate-measures analysis/dataset_definition.py --output output/measures.csv
outputs:
moderately_sensitive:
measure_csv: output/measures.csv
generate_notebook_updating_ehrql:
run: jupyter:latest jupyter nbconvert /workspace/analysis/sentinel_measures_updating_ehrql.ipynb --execute --to html --template basic --output-dir=/workspace/output --ExecutePreprocessor.timeout=86400 --no-input
needs:
[measures_ehrql]
outputs:
moderately_sensitive:
notebook: output/sentinel_measures_updating_ehrql.html
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime:
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job information
- Status
-
Failed
JobRequestError: generate_study_population_5 failed on a previous run and must be re-run
- Backend
- TPP
- Workspace
- sro-measures-dashboard-updating
- Requested by
- Rose Higgins
- Branch
- main
- Force run dependencies
- No
- Git commit hash
- 279ec78
- Requested actions
-
-
run_all
-
Code comparison
Compare the code used in this Job Request