Job request: 18286
- Organisation:
- The London School of Hygiene & Tropical Medicine
- Workspace:
- openprompt-hrqol
- ID:
- ic46oipx2shk66mr
This page shows the technical details of what happened when the authorised researcher Alasdair Henderson requested one or more actions to be run against real patient data within a secure environment.
By cross-referencing the list of jobs with the pipeline section below, you can infer what security level the outputs were written to.
The output security levels are:
-
highly_sensitive
- Researchers can never directly view these outputs
- Researchers can only request code is run against them
-
moderately_sensitive
- Can be viewed by an approved researcher by logging into a highly secure environment
- These are the only outputs that can be requested for public release via a controlled output review service.
Jobs
-
- Job identifier:
-
bsfeirfurhh6wcz6
-
- Job identifier:
-
cjqs62v7m2lphb3t
-
- Job identifier:
-
pfwi6utyh2pvfujq
-
- Job identifier:
-
s4ororf3kvk42qtm
-
- Job identifier:
-
3ogngvyk2gdvwazt
-
- Job identifier:
-
pdgmevf26dd22a5g
-
- Job identifier:
-
egji4mbll3iaysif
-
- Job identifier:
-
ql33rzgj24fmmywc
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 10000
actions:
create_dummy_data:
run: >
ehrql:v0
create-dummy-tables
analysis/model_questions/process_baseline.py output/dummydata
--
--day=0
outputs:
highly_sensitive:
openprompt_dummy: output/dummydata/open_prompt.csv
edit_dummy_data:
run: >
r:latest
analysis/dummy_data_editing/edit_automatic_dummy_data.R
needs: [create_dummy_data]
outputs:
highly_sensitive:
openprompt_dummy_edited: output/dummydata/dummy_edited/open_prompt.csv
generate_openprompt_baseline:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/process_baseline.py
--output output/openprompt_baseline.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=0
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_baseline: output/openprompt_baseline.csv
generate_openprompt_survey1:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/process_research.py
--output output/openprompt_survey1.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=0
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey1: output/openprompt_survey1.csv
generate_openprompt_survey2:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/process_research.py
--output output/openprompt_survey2.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=30
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey2: output/openprompt_survey2.csv
generate_openprompt_survey3:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/process_research.py
--output output/openprompt_survey3.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=60
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey3: output/openprompt_survey3.csv
generate_openprompt_survey4:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/process_research.py
--output output/openprompt_survey4.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=90
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey4: output/openprompt_survey4.csv
combine_openprompt:
run: >
r:latest analysis/001_datacombine.R
needs: [generate_openprompt_baseline, generate_openprompt_survey1, generate_openprompt_survey2, generate_openprompt_survey3, generate_openprompt_survey4]
outputs:
highly_sensitive:
openprompt_combined: output/openprompt_raw.csv.gz
moderately_sensitive:
openprompt_raw_skim: output/data_properties/op_raw_skim.txt
openprompt_raw_tab: output/data_properties/op_raw_tabulate.txt
openprompt_mapped_skim: output/data_properties/op_mapped_skim.txt
openprompt_mapped_tab: output/data_properties/op_mapped_tabulate.txt
check_days_after_baseline: output/data_properties/sample_day_lags.pdf
indexdates: output/data_properties/index_dates.pdf
table1: output/tab1_baseline_description.html
raw_summ_base_s: output/data_properties/op_baseline_skim.txt
raw_summ_base_t: output/data_properties/op_baseline_tabulate.txt
raw_summ_survey1_s: output/data_properties/op_survey1_skim.txt
raw_summ_survey1_t: output/data_properties/op_survey1_tabulate.txt
raw_summ_survey2_s: output/data_properties/op_survey2_skim.txt
raw_summ_survey2_t: output/data_properties/op_survey2_tabulate.txt
raw_summ_survey3_s: output/data_properties/op_survey3_skim.txt
raw_summ_survey3_t: output/data_properties/op_survey3_tabulate.txt
raw_summ_survey4_s: output/data_properties/op_survey4_skim.txt
raw_summ_survey4_t: output/data_properties/op_survey4_tabulate.txt
# generate_openprompt_plus_tpp:
# run: >
# databuilder:v0
# generate-dataset analysis/dataset_definition_openprompt.py --output output/openprompt_raw_plus_tpp.csv.gz
# needs: [create_dummy_openprompt_data]
# outputs:
# highly_sensitive:
# openprompt_tpp_combined: output/openprompt_raw_plus_tpp.csv.gz
# quick_summ_data:
# run: >
# r:latest
# analysis/010_table1.R
# needs: [generate_openprompt_plus_tpp]
# outputs:
# highly_sensitive:
# cleandata: output/cleaned_data.gz.parquet
# moderately_sensitive:
# table1: output/tab1_baseline_description.html
# longcovid_dates: output/longcovid_dates.pdf
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 00:03:01
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job request
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- openprompt-hrqol
- Requested by
- Alasdair Henderson
- Branch
- main
- Force run dependencies
- Yes
- Git commit hash
- 0f46c49
- Requested actions
-
-
run_all
-
Code comparison
Compare the code used in this job request