Job request: 18311
- Organisation:
- The London School of Hygiene & Tropical Medicine
- Workspace:
- openprompt-hrqol
- ID:
- 634rkyjombo3axxe
This page shows the technical details of what happened when the authorised researcher Alasdair Henderson requested one or more actions to be run against real patient data in the project, within a secure environment.
By cross-referencing the list of jobs with the
pipeline section below, you can infer what
security level
various outputs were written to. Researchers can never directly
view outputs marked as
highly_sensitive
;
they can only request that code runs against them. Outputs
marked as
moderately_sensitive
can be viewed by an approved researcher by logging into a highly
secure environment. Only outputs marked as
moderately_sensitive
can be requested for release to the public, via a controlled
output review service.
Jobs
-
- Job identifier:
-
uzjnhtxltxest3id
-
- Job identifier:
-
nhgqm3ufkcs4atvc
-
- Job identifier:
-
lj3kyk3robidj3yg
-
- Job identifier:
-
ewgmyd2mlj5e6d2c
-
- Job identifier:
-
ji7424wi34dlbmls
-
- Job identifier:
-
jysiah2kqc2h4xi2
-
- Job identifier:
-
6agf633zlmfjc35t
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 10000
actions:
create_dummy_data:
run: >
ehrql:v0
create-dummy-tables
analysis/model_questions/dataset_definition.py output/dummydata
--
--day=0
outputs:
highly_sensitive:
openprompt_dummy: output/dummydata/open_prompt.csv
edit_dummy_data:
run: >
r:latest
analysis/dummy_data_editing/edit_automatic_dummy_data.R
needs: [create_dummy_data]
outputs:
highly_sensitive:
openprompt_dummy_edited: output/dummydata/dummy_edited/open_prompt.csv
generate_openprompt_survey1:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey1.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=0
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey1: output/openprompt_survey1.csv
generate_openprompt_survey2:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey2.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=30
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey2: output/openprompt_survey2.csv
generate_openprompt_survey3:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey3.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=60
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey3: output/openprompt_survey3.csv
generate_openprompt_survey4:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey4.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=90
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey4: output/openprompt_survey4.csv
combine_openprompt:
run: >
r:latest analysis/001_datacombine.R
needs: [generate_openprompt_survey1, generate_openprompt_survey2, generate_openprompt_survey3, generate_openprompt_survey4]
outputs:
highly_sensitive:
openprompt_combined: output/openprompt_raw.csv.gz
moderately_sensitive:
openprompt_raw_skim: output/data_properties/op_raw_skim.txt
openprompt_raw_tab: output/data_properties/op_raw_tabulate.txt
openprompt_mapped_skim: output/data_properties/op_mapped_skim.txt
openprompt_mapped_tab: output/data_properties/op_mapped_tabulate.txt
check_days_after_baseline: output/data_properties/sample_day_lags.pdf
indexdates: output/data_properties/index_dates.pdf
table1: output/tab1_baseline_description.html
raw_summ_base_s: output/data_properties/op_baseline_skim.txt
raw_summ_base_t: output/data_properties/op_baseline_tabulate.txt
raw_summ_survey1_s: output/data_properties/op_survey1_skim.txt
raw_summ_survey1_t: output/data_properties/op_survey1_tabulate.txt
raw_summ_survey2_s: output/data_properties/op_survey2_skim.txt
raw_summ_survey2_t: output/data_properties/op_survey2_tabulate.txt
raw_summ_survey3_s: output/data_properties/op_survey3_skim.txt
raw_summ_survey3_t: output/data_properties/op_survey3_tabulate.txt
raw_summ_survey4_s: output/data_properties/op_survey4_skim.txt
raw_summ_survey4_t: output/data_properties/op_survey4_tabulate.txt
survey_date_consistency: output/data_properties/survey_date_consistency.csv
survey_date_consistency_summary: output/data_properties/survey_date_consistency_summary.csv
# generate_openprompt_plus_tpp:
# run: >
# databuilder:v0
# generate-dataset analysis/dataset_definition_openprompt.py --output output/openprompt_raw_plus_tpp.csv.gz
# needs: [create_dummy_openprompt_data]
# outputs:
# highly_sensitive:
# openprompt_tpp_combined: output/openprompt_raw_plus_tpp.csv.gz
# quick_summ_data:
# run: >
# r:latest
# analysis/010_table1.R
# needs: [generate_openprompt_plus_tpp]
# outputs:
# highly_sensitive:
# cleandata: output/cleaned_data.gz.parquet
# moderately_sensitive:
# table1: output/tab1_baseline_description.html
# longcovid_dates: output/longcovid_dates.pdf
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 00:04:48
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job information
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- openprompt-hrqol
- Requested by
- Alasdair Henderson
- Branch
- main
- Force run dependencies
- Yes
- Git commit hash
- 1b70c51
- Requested actions
-
-
run_all
-
Code comparison
Compare the code used in this Job Request