Job request: 18661
- Organisation:
- The London School of Hygiene & Tropical Medicine
- Workspace:
- openprompt-hrqol
- ID:
- 4thwaspu6mcz3jyv
This page shows the technical details of what happened when the authorised researcher Oliver Carlile requested one or more actions to be run against real patient data within a secure environment.
By cross-referencing the list of jobs with the pipeline section below, you can infer what security level the outputs were written to.
The output security levels are:
-
highly_sensitive
- Researchers can never directly view these outputs
- Researchers can only request code is run against them
-
moderately_sensitive
- Can be viewed by an approved researcher by logging into a highly secure environment
- These are the only outputs that can be requested for public release via a controlled output review service.
Jobs
-
- Job identifier:
-
a57r3dchunzl3cgr
-
- Job identifier:
-
qjfkndgmrnclxpcm
-
- Job identifier:
-
qhx7jkgndbgdzp7x
-
- Job identifier:
-
7llzmnznbrpx42gt
-
- Job identifier:
-
ywid7u5osma7vzib
-
- Job identifier:
-
oahxxambkvu7umhy
-
- Job identifier:
-
luvrpoaluw3j35pi
-
- Job identifier:
-
kmflsglieur2255o
-
- Job identifier:
-
pdpqqy4ie7ft7b2j
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 10000
actions:
create_dummy_data:
run: >
ehrql:v0
create-dummy-tables
analysis/model_questions/dataset_definition.py output/dummydata
--
--day=0
outputs:
highly_sensitive:
openprompt_dummy: output/dummydata/open_prompt.csv
edit_dummy_data:
run: >
r:latest
analysis/dummy_data_editing/edit_automatic_dummy_data.R
needs: [create_dummy_data]
outputs:
highly_sensitive:
openprompt_dummy_edited: output/dummydata/dummy_edited/open_prompt.csv
generate_openprompt_survey1:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey1.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=0
--window=5
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey1: output/openprompt_survey1.csv
generate_openprompt_survey2:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey2.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=30
--window=5
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey2: output/openprompt_survey2.csv
generate_openprompt_survey3:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey3.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=60
--window=5
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey3: output/openprompt_survey3.csv
generate_openprompt_survey4:
run: >
databuilder:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey4.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=90
--window=5
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey4: output/openprompt_survey4.csv
combine_openprompt:
run: >
r:latest analysis/001_datacombine.R
needs: [generate_openprompt_survey1, generate_openprompt_survey2, generate_openprompt_survey3, generate_openprompt_survey4]
outputs:
highly_sensitive:
openprompt_combined: output/openprompt_raw.csv.gz
moderately_sensitive:
openprompt_raw_skim: output/data_properties/op_raw_skim.txt
openprompt_raw_tab: output/data_properties/op_raw_tabulate.txt
openprompt_mapped_skim: output/data_properties/op_mapped_skim.txt
openprompt_mapped_tab: output/data_properties/op_mapped_tabulate.txt
check_days_after_baseline: output/data_properties/sample_day_lags.pdf
indexdates: output/data_properties/index_dates.pdf
table1: output/tab1_baseline_description.html
raw_summ_base_s: output/data_properties/op_baseline_skim.txt
raw_summ_base_t: output/data_properties/op_baseline_tabulate.txt
raw_summ_survey1_s: output/data_properties/op_survey1_skim.txt
raw_summ_survey1_t: output/data_properties/op_survey1_tabulate.txt
raw_summ_survey2_s: output/data_properties/op_survey2_skim.txt
raw_summ_survey2_t: output/data_properties/op_survey2_tabulate.txt
raw_summ_survey3_s: output/data_properties/op_survey3_skim.txt
raw_summ_survey3_t: output/data_properties/op_survey3_tabulate.txt
raw_summ_survey4_s: output/data_properties/op_survey4_skim.txt
raw_summ_survey4_t: output/data_properties/op_survey4_tabulate.txt
survey_date_consistency: output/data_properties/survey_date_consistency.csv
survey_date_consistency_summary: output/data_properties/survey_date_consistency_summary.csv
generate_openprompt_dataset:
run: >
stata-mp:latest analysis/op_combined.do
needs: [combine_openprompt]
outputs:
highly_sensitive:
data: output/openprompt_dataset.dta
log: logs/open-prompt-combine.log
gen_baseline_tables:
run: >
stata-mp:latest analysis/op_table1.do
needs: [generate_openprompt_dataset]
outputs:
moderately_sensitive:
demographic_data: output/table1_demograph.csv
questionnaire_data: output/table1_questions.csv
log_tables: logs/op-baseline-table1.log
# generate_openprompt_plus_tpp:
# run: >
# databuilder:v0
# generate-dataset analysis/dataset_definition_openprompt.py --output output/openprompt_raw_plus_tpp.csv.gz
# needs: [create_dummy_openprompt_data]
# outputs:
# highly_sensitive:
# openprompt_tpp_combined: output/openprompt_raw_plus_tpp.csv.gz
# quick_summ_data:
# run: >
# r:latest
# analysis/010_table1.R
# needs: [generate_openprompt_plus_tpp]
# outputs:
# highly_sensitive:
# cleandata: output/cleaned_data.gz.parquet
# moderately_sensitive:
# table1: output/tab1_baseline_description.html
# longcovid_dates: output/longcovid_dates.pdf
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 00:04:58
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job request
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- openprompt-hrqol
- Requested by
- Oliver Carlile
- Branch
- main
- Force run dependencies
- Yes
- Git commit hash
- ae34948
- Requested actions
-
-
run_all
-
Code comparison
Compare the code used in this job request