Skip to content

Job request: 20306

Organisation:
The London School of Hygiene & Tropical Medicine
Workspace:
openprompt-hrqol
ID:
emhrxqzt5quwxtls

This page shows the technical details of what happened when the authorised researcher Oliver Carlile requested one or more actions to be run against real patient data within a secure environment.

By cross-referencing the list of jobs with the pipeline section below, you can infer what security level the outputs were written to.

The output security levels are:

  • highly_sensitive
    • Researchers can never directly view these outputs
    • Researchers can only request code is run against them
  • moderately_sensitive
    • Can be viewed by an approved researcher by logging into a highly secure environment
    • These are the only outputs that can be requested for public release via a controlled output review service.

Jobs

  • Action:
    twopart_models
    Status:
    Status: Failed
    Job identifier:
    upoicejj3bosoctc
    Error:
    cancelled_by_user: Cancelled by user

Pipeline

Show project.yaml
version: '3.0'

expectations:
 population_size: 10000

actions:

  create_dummy_data: 
    run: >
      ehrql:v0
        create-dummy-tables 
        analysis/model_questions/dataset_definition.py output/dummydata 
        -- 
        --day=0
    outputs: 
      highly_sensitive:
        openprompt_dummy: output/dummydata/open_prompt.csv

  edit_dummy_data:
    run: > 
      r:latest
        analysis/dummy_data_editing/edit_automatic_dummy_data.R
    needs: [create_dummy_data]
    outputs: 
      highly_sensitive: 
        openprompt_dummy_edited: output/dummydata/dummy_edited/open_prompt.csv

  generate_openprompt_survey1: 
    run: >
      ehrql:v0
        generate-dataset 
        analysis/model_questions/dataset_definition.py 
        --output output/openprompt_survey1.csv
        --dummy-tables output/dummydata/dummy_edited
        --
        --day=0
        --window=5
    needs: [edit_dummy_data]
    outputs:
      highly_sensitive:
        openprompt_survey1: output/openprompt_survey1.csv

  generate_openprompt_survey2: 
    run: >
      ehrql:v0
        generate-dataset 
        analysis/model_questions/dataset_definition.py 
        --output output/openprompt_survey2.csv
        --dummy-tables output/dummydata/dummy_edited
        --
        --day=30
        --window=5
    needs: [edit_dummy_data]
    outputs:
      highly_sensitive:
        openprompt_survey2: output/openprompt_survey2.csv

  generate_openprompt_survey3: 
    run: >
      ehrql:v0
        generate-dataset 
        analysis/model_questions/dataset_definition.py 
        --output output/openprompt_survey3.csv
        --dummy-tables output/dummydata/dummy_edited
        --
        --day=60
        --window=5
    needs: [edit_dummy_data]
    outputs:
      highly_sensitive:
        openprompt_survey3: output/openprompt_survey3.csv

  generate_openprompt_survey4: 
    run: >
      ehrql:v0
        generate-dataset 
        analysis/model_questions/dataset_definition.py 
        --output output/openprompt_survey4.csv
        --dummy-tables output/dummydata/dummy_edited
        --
        --day=90
        --window=5
    needs: [edit_dummy_data]
    outputs:
      highly_sensitive:
        openprompt_survey4: output/openprompt_survey4.csv

  combine_openprompt:
    run: >
      r:latest analysis/001_datacombine.R
    needs: [generate_openprompt_survey1, generate_openprompt_survey2, generate_openprompt_survey3, generate_openprompt_survey4]
    outputs: 
      highly_sensitive: 
        openprompt_combined: output/openprompt_raw.csv.gz
        openprompt_combined_stata: output/op_stata.dta
      moderately_sensitive:
        openprompt_raw_skim: output/data_properties/op_raw_skim.txt
        openprompt_raw_tab: output/data_properties/op_raw_tabulate.txt
        openprompt_mapped_skim: output/data_properties/op_mapped_skim.txt
        openprompt_mapped_tab: output/data_properties/op_mapped_tabulate.txt
        check_days_after_baseline: output/data_properties/sample_day_lags.pdf
        indexdates: output/data_properties/index_dates.pdf
        table1: output/tab1_baseline_description.html
        raw_summ_base_s: output/data_properties/op_baseline_skim.txt
        raw_summ_base_t: output/data_properties/op_baseline_tabulate.txt
        raw_summ_survey1_s: output/data_properties/op_survey1_skim.txt
        raw_summ_survey1_t: output/data_properties/op_survey1_tabulate.txt
        raw_summ_survey2_s: output/data_properties/op_survey2_skim.txt
        raw_summ_survey2_t: output/data_properties/op_survey2_tabulate.txt
        raw_summ_survey3_s: output/data_properties/op_survey3_skim.txt
        raw_summ_survey3_t: output/data_properties/op_survey3_tabulate.txt
        raw_summ_survey4_s: output/data_properties/op_survey4_skim.txt
        raw_summ_survey4_t: output/data_properties/op_survey4_tabulate.txt
        survey_date_consistency: output/data_properties/survey_date_consistency.csv
        survey_date_consistency_summary: output/data_properties/survey_date_consistency_summary.csv

  generate_openprompt_dataset:
    run: >
      stata-mp:latest analysis/op_combined.do
    needs: [combine_openprompt]
    outputs:
      highly_sensitive:
        data: output/openprompt_dataset.dta
        log: output/open-prompt-combine.log

  extract_linked_tpp_info: 
    run: >
      ehrql:v0
        generate-dataset 
        analysis/add_tpp_data.py 
        --output output/openprompt_linked_tpp.csv.gz
    outputs:
      highly_sensitive:
        openprompt_survey1: output/openprompt_linked_tpp.csv.gz

  import_linked_tpp: 
    run:   
      r:latest analysis/002_import_linked_tpp.R
    needs: [extract_linked_tpp_info]
    outputs: 
      moderately_sensitive:
        openprompt_tpp_skim: output/data_properties/op_tpp_skim.txt
        openprompt_tpp_tab: output/data_properties/op_tpp_tabulate.txt

  combine_linked_tpp:
    run: > 
      stata-mp:latest analysis/op_tpp_linked.do
    needs: [generate_openprompt_dataset, extract_linked_tpp_info]
    outputs: 
      highly_sensitive:
        data: output/op_tpp_linked.dta
        logs: output/linked-tpp.log

  gen_baseline_tables:
    run: >
      stata-mp:latest analysis/op_table1.do
    needs: [combine_linked_tpp]
    outputs:
      moderately_sensitive:
        demographic_data: output/tables/table1_demographic.csv
        questionnaire_data: output/tables/table1_questions.csv
        long_covid_dx: output/tables/long-covid-dx.csv
        utility_score: output/figures/baseline_EQ5D_utility.svg
        disutility_score: output/figures/baseline_EQ5D_disutility.svg
        question_responses: output/figures/baseline_EQ5D_responses.svg
        question_percents: output/figures/baseline_EQ5D_percentage.svg
        vas_ncovids: output/figures/VAS_by_covids.svg
        vas_nvaccines: output/figures/VAS_by_vaccines.svg
        facit_fscore: output/figures/facit_baseline.svg
        log_tables: output/op-baseline-table1.log

  twopart_models:
    run: >
      stata-mp:latest analysis/op_modelling.do
    needs: [combine_linked_tpp]
    outputs: 
      moderately_sensitive:
        EQ5D_by_longcovd: output/figures/EQ5D_longcovid.svg
        demographic_indicators: output/figures/mixed_odds_ratio.svg
        demographic_coefficients: output/figures/mixed_coefs.svg
        socioeconomic_indicators: output/figures/socio_odds.svg
        socioeconomic_coefficients: output/figures/socio_coefs.svg
        baseline_regression: output/tables/twopart-model.csv
        longitudinal_models: output/tables/longit-model.csv
        log_regression: output/models.log

  mixed_models:
    run: >
      stata-mp:latest analysis/op_mixed_models.do
    needs: [combine_linked_tpp]
    outputs:
      moderately_sensitive:
        mixed_glm: output/tables/mixed-models.csv
        # proms_mixed: output/tables/mixed-proms.csv
        glm_log: output/mixed-glm.log

Timeline

  • Created:

  • Runtime:

These timestamps are generated and stored using the UTC timezone on the TPP backend.

Job request

Status
Failed
Backend
TPP
Workspace
openprompt-hrqol
Requested by
Oliver Carlile
Branch
main
Force run dependencies
No
Git commit hash
84cb6df
Requested actions
  • twopart_models

Code comparison

Compare the code used in this job request