Job request: 20894
- Organisation:
- The London School of Hygiene & Tropical Medicine
- Workspace:
- openprompt-hrqol
- ID:
- pgufdwerkizclhi2
This page shows the technical details of what happened when the authorised researcher Oliver Carlile requested one or more actions to be run against real patient data in the project, within a secure environment.
By cross-referencing the list of jobs with the
pipeline section below, you can infer what
security level
various outputs were written to. Researchers can never directly
view outputs marked as
highly_sensitive
;
they can only request that code runs against them. Outputs
marked as
moderately_sensitive
can be viewed by an approved researcher by logging into a highly
secure environment. Only outputs marked as
moderately_sensitive
can be requested for release to the public, via a controlled
output review service.
Jobs
-
- Job identifier:
-
j5pvsv7z3e5jpr6t
-
- Job identifier:
-
ipqfggincrle4yi3
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 10000
actions:
create_dummy_data:
run: >
ehrql:v0
create-dummy-tables
analysis/model_questions/dataset_definition.py output/dummydata
--
--day=0
outputs:
highly_sensitive:
openprompt_dummy: output/dummydata/open_prompt.csv
edit_dummy_data:
run: >
r:latest
analysis/dummy_data_editing/edit_automatic_dummy_data.R
needs: [create_dummy_data]
outputs:
highly_sensitive:
openprompt_dummy_edited: output/dummydata/dummy_edited/open_prompt.csv
generate_openprompt_survey1:
run: >
ehrql:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey1.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=0
--window=5
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey1: output/openprompt_survey1.csv
generate_openprompt_survey2:
run: >
ehrql:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey2.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=30
--window=5
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey2: output/openprompt_survey2.csv
generate_openprompt_survey3:
run: >
ehrql:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey3.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=60
--window=5
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey3: output/openprompt_survey3.csv
generate_openprompt_survey4:
run: >
ehrql:v0
generate-dataset
analysis/model_questions/dataset_definition.py
--output output/openprompt_survey4.csv
--dummy-tables output/dummydata/dummy_edited
--
--day=90
--window=5
needs: [edit_dummy_data]
outputs:
highly_sensitive:
openprompt_survey4: output/openprompt_survey4.csv
combine_openprompt:
run: >
r:latest analysis/001_datacombine.R
needs: [generate_openprompt_survey1, generate_openprompt_survey2, generate_openprompt_survey3, generate_openprompt_survey4]
outputs:
highly_sensitive:
openprompt_combined: output/openprompt_raw.csv.gz
openprompt_combined_stata: output/op_stata.dta
moderately_sensitive:
openprompt_raw_skim: output/data_properties/op_raw_skim.txt
openprompt_raw_tab: output/data_properties/op_raw_tabulate.txt
openprompt_mapped_skim: output/data_properties/op_mapped_skim.txt
openprompt_mapped_tab: output/data_properties/op_mapped_tabulate.txt
check_days_after_baseline: output/data_properties/sample_day_lags.pdf
indexdates: output/data_properties/index_dates.pdf
table1: output/tab1_baseline_description.html
raw_summ_base_s: output/data_properties/op_baseline_skim.txt
raw_summ_base_t: output/data_properties/op_baseline_tabulate.txt
raw_summ_survey1_s: output/data_properties/op_survey1_skim.txt
raw_summ_survey1_t: output/data_properties/op_survey1_tabulate.txt
raw_summ_survey2_s: output/data_properties/op_survey2_skim.txt
raw_summ_survey2_t: output/data_properties/op_survey2_tabulate.txt
raw_summ_survey3_s: output/data_properties/op_survey3_skim.txt
raw_summ_survey3_t: output/data_properties/op_survey3_tabulate.txt
raw_summ_survey4_s: output/data_properties/op_survey4_skim.txt
raw_summ_survey4_t: output/data_properties/op_survey4_tabulate.txt
survey_date_consistency: output/data_properties/survey_date_consistency.csv
survey_date_consistency_summary: output/data_properties/survey_date_consistency_summary.csv
generate_openprompt_dataset:
run: >
stata-mp:latest analysis/op_combined.do
needs: [combine_openprompt]
outputs:
highly_sensitive:
data: output/openprompt_dataset.dta
log: output/open-prompt-combine.log
extract_linked_tpp_info:
run: >
ehrql:v0
generate-dataset
analysis/add_tpp_data.py
--output output/openprompt_linked_tpp.csv.gz
outputs:
highly_sensitive:
openprompt_survey1: output/openprompt_linked_tpp.csv.gz
import_linked_tpp:
run:
r:latest analysis/002_import_linked_tpp.R
needs: [extract_linked_tpp_info]
outputs:
moderately_sensitive:
openprompt_tpp_skim: output/data_properties/op_tpp_skim.txt
openprompt_tpp_tab: output/data_properties/op_tpp_tabulate.txt
combine_linked_tpp:
run: >
stata-mp:latest analysis/op_tpp_linked.do
needs: [generate_openprompt_dataset, extract_linked_tpp_info]
outputs:
highly_sensitive:
data: output/op_tpp_linked.dta
logs: output/linked-tpp.log
gen_baseline_tables:
run: >
stata-mp:latest analysis/op_table1.do
needs: [combine_linked_tpp]
outputs:
moderately_sensitive:
demographic_data: output/tables/table1_demographic.csv
rounded_demograpics: output/tables/table1_demographic_rounded.csv
questionnaire_data: output/tables/table1_questions.csv
rounded_questions: output/tables/table1_questions_rounded.csv
long_covid_dx: output/tables/long-covid-dx.csv
rounded_dx: output/tables/long-covid-dx-rounded.csv
utility_score: output/figures/baseline_EQ5D_utility.svg
disutility_score: output/figures/baseline_EQ5D_disutility.svg
question_responses: output/figures/baseline_EQ5D_responses.svg
question_percents: output/figures/baseline_EQ5D_percentage.svg
vas_ncovids: output/figures/VAS_by_covids.svg
vas_nvaccines: output/figures/VAS_by_vaccines.svg
facit_fscore: output/figures/facit_baseline.svg
log_tables: output/op-baseline-table1.log
twopart_models:
run: >
stata-mp:latest analysis/op_modelling.do
needs: [combine_linked_tpp]
outputs:
moderately_sensitive:
demographic_indicators: output/figures/mixed_odds_ratio.svg
demographic_coefficients: output/figures/mixed_coefs.svg
socioeconomic_indicators: output/figures/socio_odds.svg
socioeconomic_coefficients: output/figures/socio_coefs.svg
baseline_regression: output/tables/twopart-model.csv
longitudinal_models: output/tables/longit-model.csv
attrition_models: output/tables/selective_attrition.csv
log_regression: output/models.log
mixed_models:
run: >
stata-mp:latest analysis/op_mixed_models.do
needs: [combine_linked_tpp]
outputs:
moderately_sensitive:
mixed_linear: output/tables/mixed-models.csv
proms_mixed: output/tables/mixed-proms.csv
proms_odds: output/figures/proms_odds.svg
proms_demographic: output/figures/demo_odds.svg
demographics_adjust_coefs: output/figures/demo_proms_coefs.svg
proms_adjust_ceofs: output/figures/proms_coefs.svg
glm_log: output/mixed-glm.log
estimate_qalys:
run: >
stata-mp:latest analysis/op_qalys.do
needs: [combine_linked_tpp]
outputs:
moderately_sensitive:
utility_scores: output/tables/utility-scores.csv
EQ5D_by_longcovd: output/figures/EQ5D_longcovid.svg
EQ5D_by_surveys: output/figures/EQ5D_surveys.svg
utility_by_survey: output/figures/utility_survey_response.svg
selective_attrition: output/figures/EQ5D_surveys_att.svg
QALY_by_age: output/figures/QALM_losses_age.svg
qaly_log: output/qaly-estimates.log
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 00:06:13
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job information
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- openprompt-hrqol
- Requested by
- Oliver Carlile
- Branch
- main
- Force run dependencies
- No
- Git commit hash
- 4867ee8
- Requested actions
-
-
twopart_models
-
estimate_qalys
-
Code comparison
Compare the code used in this Job Request