Job request: 21206
- Organisation:
- The London School of Hygiene & Tropical Medicine
- Workspace:
- healthcare_utilisation_openprompt
- ID:
- n4z4siyy2lewmc7l
This page shows the technical details of what happened when authorised researcher Liang-Yu Lin requested one or more actions to be run against real patient data in the project, within a secure environment.
By cross-referencing the indicated Requested Actions with the
Pipeline section below, you can infer what
security level
various outputs were written to. Outputs marked as
highly_sensitive
can never be viewed directly by a researcher; they can only
request that code runs against them. Outputs marked as
moderately_sensitive
can be viewed by an approved researcher by logging into a highly
secure environment. Only outputs marked as
moderately_sensitive
can be requested for release to the public, via a controlled
output review service.
Jobs
-
- Job identifier:
-
7ssldbm7iu6tc7pz
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 5000
actions:
# Contemporary comparison data management:
# # Before matching data management:
generate_long_covid_exposure_dataset:
run:
ehrql:v0 generate-dataset
analysis/dataset_definition_unmatched_exp_lc.py
--output output/dataset_exp_lc_unmatched.csv
outputs:
highly_sensitive:
cohort: output/dataset_exp_lc_unmatched.csv
generate_list_gp_use_long_covid_dx:
run:
ehrql:v0 generate-dataset
analysis/dataset_definition_lc_gp_list.py
--output output/dataset_lc_gp_list.csv
outputs:
highly_sensitive:
cohort: output/dataset_lc_gp_list.csv
generate_dataset_comparator_exclude_gp_no_long_covid:
needs: [generate_list_gp_use_long_covid_dx]
run:
ehrql:v0 generate-dataset
analysis/dataset_definition_unmatched_comparator.py
--output output/dataset_comparator_unmatched.csv
outputs:
highly_sensitive:
cohort: output/dataset_comparator_unmatched.csv
# # OS matching
test_matching:
run:
python:latest python analysis/match_test.py
needs: [generate_dataset_comparator_exclude_gp_no_long_covid, generate_long_covid_exposure_dataset]
outputs:
highly_sensitive:
matched_cases: output/matched_cases_stp.csv
matched_matches: output/matched_matches_stp.csv
matched_all: output/matched_combined_stp.csv
moderately_sensitive:
matching_report: output/matching_report_stp.txt
# # After matching data management
import_matched_exposure_drug_cost:
run:
ehrql:v0
generate-dataset analysis/dataset_definition_matched_cases_drug_costs.py
--output output/matched_cases_with_drug_costs.csv.gz
needs: [test_matching]
outputs:
highly_sensitive:
cohort: output/matched_cases_with_drug_costs.csv.gz
import_matched_controls_drug_costs:
run:
ehrql:v0
generate-dataset analysis/dataset_definition_matched_control_drug_costs.py
--output output/matched_control_with_drug_costs.csv.gz
needs: [test_matching]
outputs:
highly_sensitive:
cohort: output/matched_control_with_drug_costs.csv.gz
# # After matching data management: for new version of data
import_matched_exposure_update:
run:
ehrql:v0
generate-dataset analysis/dataset_definition_matched_cases_updated.py
--output output/matched_cases_with_ehr_update.csv.gz
needs: [test_matching]
outputs:
highly_sensitive:
cohort: output/matched_cases_with_ehr_update.csv.gz
import_matched_control_updates:
run:
ehrql:v0
generate-dataset analysis/dataset_definition_matched_control_updated.py
--output output/matched_control_with_ehr_update.csv.gz
needs: [test_matching]
outputs:
highly_sensitive:
cohort: output/matched_control_with_ehr_update.csv.gz
# Historical comparison data management:
# # Before matching data management:
generate_historical_exp_data:
run:
ehrql:v0 generate-dataset analysis/dataset_definition_hx_unmatched_exp_lc.py
--output output/hx_unmatched_exp.csv
outputs:
highly_sensitive:
hx_cohort: output/hx_unmatched_exp.csv
generate_historical_comp_data_exclude_gp_no_long_covid:
needs: [generate_list_gp_use_long_covid_dx]
run:
ehrql:v0 generate-dataset analysis/dataset_definition_hx_unmatched_com_no_lc.py
--output output/hx_dataset_comp_unmatched.csv
outputs:
highly_sensitive:
hx_cohort: output/hx_dataset_comp_unmatched.csv
# # OS matching
historical_matching:
run:
python:latest python analysis/match_historical.py
needs: [generate_historical_exp_data, generate_historical_comp_data_exclude_gp_no_long_covid]
outputs:
highly_sensitive:
matched_cases: output/matched_cases_historical.csv
matched_matches: output/matched_matches_historical.csv
matched_all: output/matched_combined_historical.csv
moderately_sensitive:
matching_report: output/matching_report_historical.txt
# # After matching data management
import_matched_historical_exposure:
run:
ehrql:v0
generate-dataset analysis/dataset_definition_hx_matched_exp_lc.py
--output output/hx_matched_cases_with_ehr.csv.gz
needs: [historical_matching]
outputs:
highly_sensitive:
cohort: output/hx_matched_cases_with_ehr.csv.gz
import_matched_historical_controls:
run:
ehrql:v0
generate-dataset analysis/dataset_definition_hx_matched_comp.py
--output output/hx_matched_control_with_ehr.csv.gz
needs: [historical_matching]
outputs:
highly_sensitive:
cohort: output/hx_matched_control_with_ehr.csv.gz
# Checking the secondary cost data distribution
checking_cost_data_distribution:
run:
ehrql:v0
generate-dataset analysis/dataset_definition_cost_data_description.py
--output output/qc_cost_by_year.csv.gz
outputs:
highly_sensitive:
huge_cost_data: output/qc_cost_by_year.csv.gz
qc_check_all_cost_data:
needs: [checking_cost_data_distribution]
run:
r:latest analysis/qc03_00_check_cost_distribution.R
outputs:
moderately_sensitive:
summarised_all_cost_data: output/qc03_00_cost_data_desc_stat.csv
qc_check_queried_cost_data_dist:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/qc03_01_now_cost_data_distribution.R
outputs:
moderately_sensitive:
summarised_queried_all_cost_data: output/qc03_01_study_all_cost_distribution.csv
# Reporting: demographic distribution
# Contemporary comparison:
report01_matched_datasets:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st01_report_matched.R
outputs:
moderately_sensitive:
matched_table: output/st01_matched_numbers_table.csv # Table 1
explore_fu_time: output/st01_matched_numbers_check_fu.csv # check the incorrect follow-up time
explore_vax_fig: output/st1_exporing_vax_index_date.png # Check vax date
missing_table: output/missing_distribution_table.csv # Missing pattern tab
missing_pattern: output/missing_pattern_current.png # Missing patter plot
# Contemporary comparison
# Two part hurdle model:
# # Main results: all healthcare utilisation
report_02_01_all_visits_hurdle:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st02_01_now_total_visit_hurdel.R
outputs:
moderately_sensitive:
total_reg_summary: output/st02_01_total_reg_summary.txt
binomial_visits: output/st02_01_total_binomial.csv
hurdle_all_visits: output/st02_01_total_hurdle.csv
predicted_visits: output/st02_01_total_predicted_counts.csv
total_visit_bi_model_count: output/st02_01_total_binomial_model_counts.csv
total_visit_hurdle_count: output/st02_01_total_hurdle_model_counts.csv
# # Visulize main outcome:
report_02_06_plot_main_visit_outcomes:
needs: [report_02_01_all_visits_hurdle]
run:
r:latest analysis/st02_06_visualise_total_outcome.R
outputs:
moderately_sensitive:
outcomes_plots: output/st02_06_total_healthcare_visits.png
# # Total primary care utilisation - hurdle
report_02_02_00_primary_care_visit_hurdle:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st02_02_now_primarycare_visits_hurdel.R
outputs:
moderately_sensitive:
pc_reg_summary: output/st02_02_parimarycare_reg_summary.txt
pc_binomial: output/st02_02_parimarycare_binomial.csv
pc_hurdle: output/st02_02_parimarycare_hurdle.csv
predicted_pc_visits: output/st02_02_parimarycare_predicted_counts.csv
pc_visit_bi_model_count: output/st02_02_parimarycare_binomial_model_counts.csv
pc_visit_hurdle_model_count: output/st02_02_parimarycare_hurdle_model_counts.csv
# Prescription visits:
report_02_02_01_prescription_visit_hurdle:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st02_02_01_now_durg_visits_hurdel.R
outputs:
moderately_sensitive:
drug_reg_summary: output/st02_02_01_drug_reg_summary.txt
drug_binomial: output/st02_02_01_drug_binomial.csv
drug_hurdle: output/st02_02_01_drug_hurdle.csv
predicted_drug_visits: output/st02_02_01_drug_predicted_counts.csv
drug_visit_bi_model_count: output/st02_02_01_drug_binomial_model_counts.csv
drug_visit_hurdle_model_count: output/st02_02_01_drug_hurdle_model_counts.csv
# gp visits:
report_02_02_02_gp_only_visit_hurdle:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st02_02_02_now_gp_only_visits_hurdel.R
outputs:
moderately_sensitive:
drug_reg_summary: output/st02_02_02_gponly_reg_summary.txt
drug_binomial: output/st02_02_02_gponly_binomial.csv
drug_hurdle: output/st02_02_02_gponly_hurdle.csv
predicted_drug_visits: output/st02_02_02_gponly_predicted_counts.csv
drug_visit_bi_model_count: output/st02_02_02_gponly_binomial_model_counts.csv
drug_visit_hurdle_model_count: output/st02_02_02_gponly_hurdle_model_counts.csv
# Visualise gp and prescription visits separately:
report_02_02_03_visualise_gp_and_prescription_visits:
needs: [report_02_02_01_prescription_visit_hurdle, report_02_02_02_gp_only_visit_hurdle]
run:
r:latest analysis/st02_02_03_visualise_gp_drug_visits.R
outputs:
moderately_sensitive:
gp_only_visits: output/st02_02_03_gp_only_visits.png
prescription_visits: output/st02_02_03_prescription_visits.png
# # Hospital admission - hurdle
report_02_03_now_hospital_admin_hurdle:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st02_03_now_hospital_hurdel.R
outputs:
moderately_sensitive:
hos_binomial: output/st02_03_hos_binomial.csv
hos_hurdle: output/st02_03_hos_hurdle.csv
hos_reg_summary: output/st02_03_hos_reg_summary.txt
predicted_hos_admin_counts: output/st02_03_hos_predicted_counts.csv
hos_visit_bi_model_count: output/st02_03_hos_binomial_model_counts.csv
hos_visit_hurdle_model_count: output/st02_03_hos_hurdle_model_counts.csv
# # A&E visits - hurdle
report_02_04_now_ane_visits_hurdle:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st02_04_now_ane_visits_hurdel.R
outputs:
moderately_sensitive:
ane_binomial: output/st02_04_ane_binomial.csv
ane_hurdle: output/st02_04_ane_hurdle.csv
ane_reg_summary: output/st02_04_ane_reg_summary.txt
predicted_ane_visits: output/st02_04_ane_predicted_counts.csv
ane_visit_bi_model_count: output/st02_04_ane_binomial_model_counts.csv
ane_visit_hurdle_model_count: output/st02_04_ane_hurdle_model_counts.csv
# # OPA visits - hurdle
report_02_05_now_opa_visits_hurdle:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st02_05_now_opa_visits_hurdel.R
outputs:
moderately_sensitive:
opa_binomial: output/st02_05_opa_binomial.csv
opa_hurdle: output/st02_05_opa_hurdle.csv
opa_reg_summary: output/st02_05_opa_reg_summary.txt
predicted_opa_visits: output/st02_05_opa_predicted_counts.csv
opa_visit_bi_model_count: output/st02_05_opa_binomial_model_counts.csv
opa_visit_hurdle_model_count: output/st02_05_opa_hurdle_model_counts.csv
# # Visulize different type of outcomes:
report_02_07_plot_different_type_outcomes:
needs: [report_02_02_00_primary_care_visit_hurdle, report_02_03_now_hospital_admin_hurdle, report_02_04_now_ane_visits_hurdle, report_02_05_now_opa_visits_hurdle]
run:
r:latest analysis/st02_07_visualise_outcomes_by_types.R
outputs:
moderately_sensitive:
primary_care_plots: output/st02_07_parimary_care_visits.png
hos_admin_plots: output/st02_07_hospitalisations.png
a_and_e_visit_plots: output/st02_07_a_and_e_visits.png
opa_visit_plots: output/st02_07_opa_visits.png
# Main outcome: total Costs using twopart model
report_03_03_total_costs_twopart:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_03_now_total_cost_twopart.R
outputs:
moderately_sensitive:
total_cost_reg_summary: output/st03_03_total_reg_summary.txt
total_cost_binary: output/st03_03_total_cost_binary.csv
total_cost_tpm: output/st03_03_total_cost_gammaglm.csv
predicted_total_costs: output/st03_03_total_cost_predicted_costs.csv
total_cost_bi_model_check: output/st03_03_total_cost_binomial_model_counts.csv
total_cost_gamma_model_check: output/st03_03_total_cost_gamma_model_counts.csv
# # Visulize main cost outcome:
report_03_08_plot_main_cost_outcomes:
needs: [report_03_03_total_costs_twopart]
run:
r:latest analysis/st03_08_visualise_total_cost_outcomes.R
outputs:
moderately_sensitive:
total_cost_outcomes_plots: output/st03_08_total_cost.png
# GP costs: run two part model and predict costs
report_03_04_gp_cost_twopm:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_04_now_gp_cost_twopart.R
outputs:
moderately_sensitive:
gp_cost-binomial: output/st03_04_now_gp_cost_binomial_output.csv
gp_cost_twopm: output/st03_04_now_gp_cost_twopm_output.csv
gp_cost_tpm_reg_summary: output/st03_04_now_gp_reg_summary.txt
gp_predicted_costs: output/st03_04_predict_gp_cost_tpm.csv
gp_cost_bi_model_check: output/st03_04_gp_binomial_model_counts.csv
gp_cost_gamma_model_check: output/st03_04_gp_gamma_model_counts.csv
report_03_04_drug_cost_twopm:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_04_now_drug_cost_twopart.R
outputs:
moderately_sensitive:
drug_cost-binomial: output/st03_04_now_drug_cost_binomial_output.csv
drug_cost_twopm: output/st03_04_now_drug_cost_twopm_output.csv
drug_cost_tpm_reg_summary: output/st03_04_now_drug_reg_summary.txt
drug_predicted_costs: output/st03_04_predict_drug_cost_tpm.csv
drug_cost_bi_model_check: output/st03_04_drug_binomial_model_counts.csv
drug_cost_gamma_model_check: output/st03_04_drug_gamma_model_counts.csv
report_03_04_primarycare_cost_twopm:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_04_now_primarycare_cost_twopart.R
outputs:
moderately_sensitive:
primarycare_cost-binomial: output/st03_04_now_primarycare_cost_binomial_output.csv
primarycare_cost_twopm: output/st03_04_now_primarycare_cost_twopm_output.csv
primarycare_cost_tpm_reg_summary: output/st03_04_now_primarycare_reg_summary.txt
primarycare_predicted_costs: output/st03_04_predict_primarycare_cost_tpm.csv
primarycare_cost_bi_model_check: output/st03_04_primarycare_binomial_model_counts.csv
primarycare_cost_gamma_model_check: output/st03_04_primarycare_gamma_model_counts.csv
# APC costs: run two part model and predict costs
report_03_05_apc_cost_twopm:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_05_now_apc_cost_twopart.R
outputs:
moderately_sensitive:
apc_cost_binomial: output/st03_05_now_apc_cost_binomial_output.csv
apc_cost_twopm: output/st03_05_now_apc_cost_twopm_output.csv
apc_cost_reg_summary: output/st03_05_now_apc_cost_reg_summary.txt
apc_predicted_costs: output/st03_05_predict_apc_cost_tpm.csv
apc_cost_bi_model_check: output/st03_05_apc_binomial_model_counts.csv
apc_cost_gamma_model_check: output/st03_05_apc_gamma_model_counts.csv
# A&E costs: run two part model and predict costs
report_03_06_a_and_e_cost_twopm:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_06_now_ane_cost_twopart.R
outputs:
moderately_sensitive:
ane_cost_binomial: output/st03_06_ane_cost_binomial_output.csv
ane_cost_twopm: output/st03_06_ane_cost_twopm_output.csv
ane_cost_reg_summary: output/st03_06_ane_reg_summary.txt
ane_predicted_costs: output/st03_06_predict_ane_cost_tpm.csv
ane_cost_bi_model_check: output/st03_06_ane_binomial_model_counts.csv
ane_cost_gamma_model_check: output/st03_06_ane_gamma_model_counts.csv
# OPA costs: run two part model and predict costs
report_03_07_opa_cost_twopm:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_07_now_opa_cost_twopart.R
outputs:
moderately_sensitive:
opa_cost_binomial: output/st03_07_opa_cost_binomial_output.csv
opa_cost_twopm: output/st03_07_opa_cost_twopm_output.csv
opa_cost_reg_summary: output/st03_07_opa_reg_summary.txt
opa_predicted_costs: output/st03_07_predict_opa_cost_tpm.csv
opa_cost_bi_model_check: output/st03_07_opa_binomial_model_counts.csv
opa_cost_gamma_model_check: output/st03_07_opa_gamma_model_counts.csv
# # Visulize different types of cost outcome:
report_03_09_plot_types_cost_outcomes:
needs: [report_03_04_gp_cost_twopm, report_03_04_drug_cost_twopm, report_03_05_apc_cost_twopm, report_03_06_a_and_e_cost_twopm, report_03_07_opa_cost_twopm]
run:
r:latest analysis/st03_09_visualise_type_cost_outcomes.R
outputs:
moderately_sensitive:
gp_cost_plot: output/st03_09_gp_costs.png
drug_cost_plot: output/st03_09_drug_costs.png
apc_cost_plot: output/st03_09_apc_costs.png
ane_cost_plot: output/st03_09_ane_costs.png
opa_cost_plot: output/st03_09_opa_costs.png
# Historical: data distribution
report05_hx_matched_data_distribution:
needs: [import_matched_historical_exposure, import_matched_historical_controls]
run:
r:latest analysis/st05_report_matched_historical_records.R
outputs:
moderately_sensitive:
historical_table_1: output/st05_hx_matched_numbers_table.csv
crude_visits_distribution: output/st05_hx_crude_vistis_exp_time.csv
hx_now_smooth_line: output/st05_historical_smooth.jpg
# # Historical: difference-in-difference model with two-part model
report_05_did_tpm_model:
needs: [import_matched_historical_exposure, import_matched_historical_controls]
run:
r:latest analysis/st05_did_twopart.R
outputs:
moderately_sensitive:
did_crude_plot: output/st05_did_crude.png
did_adj_plot: output/st05_did_adj.png
did_reg_table: output/st05_did_tpm_predicted.csv
did_reg_summary: output/st05_did_reg_summary_output.txt
# Supplementary materials ===========================
# Supplementary 1-1 fig: outcome distribution
report_04_01_supp1_outcome_dist:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st04_01_outcome_distribution_plots.R
outputs:
moderately_sensitive:
outcome_distribution_plot: output/st04_01_total_outcome_distribution.png
zero_percent_fig: output/st04_01_explore_zero_percentage.png
monthly_oucome_tb: output/st04_01_monthly_outcome_distribution.csv
visit_explore: output/st04_01_cat_visits_summary.csv
# Supplementary 1-2 table: checking data dispersion
report_04_02_supp2_dispersion_checking:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st04_01_sup_02_check_visit_overdispersion.R
outputs:
moderately_sensitive:
model_dispersion: output/st04_02_supp_02_checking_dispersion.csv
# # Supplementary 2: factors associated with high healthcare use among LC
report_04_02_associated_factors:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st04_02_now_associated_factors.R
outputs:
moderately_sensitive:
all_factors_bi_or: output/st04_02_all_factors_binomial.csv
all_factors_hurdle_rr: output/st04_02_all_factors_hurdle.csv
all_bi_model_count: output/st04_02_all_factors_bi_model_counts.csv
all_hurdle_model_count: output/st04_02_all_factors_hurdle_model_counts.csv
# # visualise subgroup lc only outputs:
report_04_03_visualise_associated_factors:
needs: [report_04_02_associated_factors]
run:
r:latest analysis/st04_03_now_visualise_associated_factors.R
outputs:
moderately_sensitive:
all_factor_forest_plot: output/st04_03_all_factors.png
# # Supplementary 3: stratified by hospitalisation, sex, age - hurdle
report_04_04_stratified_by_cov:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st04_04_stratum_by_cov_hurdle.R
outputs:
moderately_sensitive:
previous_hospitalisation_stratum: output/st04_04_stratum_hospitalisation.csv
sex_stratum: output/st04_04_stratum_sex.csv
age_cat_stratum: output/st04_04_stratum_age.csv
predict_subgoups_visits: output/st04_04_stratum_predicted_value.csv
# Visualise the stratum specific outcomes:
report_04_05_visualise_stratum:
needs: [report_04_04_stratified_by_cov]
run:
r:latest analysis/st04_05_stratified_visualisation.R
outputs:
moderately_sensitive:
previous_hos_stratum_plot: output/st04_05_stratum_hos_visits.png
sex_stratum_plot: output/st04_05_stratum_sex_visits.png
age_stratum_plot: output/st04_05_stratum_age_visits.png
# # Sensitivity analyses: main analyses among people who had GP registeration and visits
# 1 year before study started.
report04_06_sens_gp1y_all_visits_hurdle:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st04_06_sens_reg_gp1y_total_visit_hurdel.R
outputs:
moderately_sensitive:
sens_gp1y_total_reg_summary: output/st04_06_sens_gp1y_total_reg_summary.txt
sens_gp1y_binomial_visits: output/st04_06_sens_gp1y_total_binomial.csv
sens_gp1y_hurdle_all_visits: output/st04_06_sens_gp1y_total_hurdle.csv
sens_gp1y_predicted_visits: output/st04_06_sens_gp1y_total_predicted_counts.csv
sens_gp1y_total_visit_bi_model_count: output/st04_06_sens_gp1y_total_binomial_model_counts.csv
sens_gp1y_total_visit_hurdle_count: output/st04_06_sens_gp1y_total_hurdle_model_counts.csv
# Visualise sensitivity analyses outcomes: registered subgroup
report04_06_plot_sens_gp1y_all_visits:
needs: [report04_06_sens_gp1y_all_visits_hurdle]
run:
r:latest analysis/st04_06_02_plot_visualise_sens_gp1y_outcome.R
outputs:
moderately_sensitive:
sens_gp1y_plot: output/st04_06_02_plot_sens_gp1y_total_visits.png
# # Sensitivity analyses: main analyses among people who had positive covid before follow-up
report04_07_sens_covid_positive_all_visits_hurdle:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st04_07_sens_covid_pos_now_total_visit_hurdel.R
outputs:
moderately_sensitive:
sens_covid_p_total_reg_summary: output/st04_07_sens_covid_pos_total_reg_summary.txt
sens_covid_p_binomial_visits: output/st04_07_sens_covid_pos_total_binomial.csv
sens_covid_p_hurdle_all_visits: output/st04_07_sens_covid_pos_total_hurdle.csv
sens_covid_p_predicted_visits: output/st04_07_sens_covid_pos_total_predicted_counts.csv
sens_covid_p_total_visit_bi_model_count: output/st04_07_sens_covid_pos_total_binomial_model_counts.csv
sens_covid_p_total_visit_hurdle_count: output/st04_07_sens_covid_pos_hurdle_model_counts.csv
# Visualise sensitivity analyses outcomes: covid positive group
report04_07_plot_sens_covid_positive_all_visits:
needs: [report04_07_sens_covid_positive_all_visits_hurdle]
run:
r:latest analysis/st04_07_02_plot_visualise_cov_positive_outcome.R
outputs:
moderately_sensitive:
sens_gp1y_plot: output/st04_07_plot_sens_covid_plus_total_healthcare_visits.png
# Sensitivity analyses: inpute missing costs
# Imputed total cost outcomes:
report_03_03_v2_total_costs_twopart:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_03_v2_now_inputed_total_cost_twopart.R
outputs:
moderately_sensitive:
inpute_total_cost_reg_summary: output/st03_03_v2_total_inputed_cost_reg_summary.txt
inpute_total_cost_binary: output/st03_03_v2_inputed_total_cost_binary.csv
inpute_total_cost_tpm: output/st03_03_v2_inputed_total_cost_gammaglm.csv
inpute_inpute_predicted_total_costs: output/st03_03_v2_inputed_total_cost_predicted_costs.csv
inpute_total_cost_bi_model_check: output/st03_03_v2_inputed_total_cost_binomial_model_counts.csv
inpute_total_cost_gamma_model_check: output/st03_03_v2_inputed_total_cost_gamma_model_counts.csv
# # Visulize the inputed main cost outcome:
report_03_08_v2_plot_main_inputed_cost_outcomes:
needs: [report_03_03_v2_total_costs_twopart]
run:
r:latest analysis/st03_08_v2_visualise_inputed_total_cost_outcomes.R
outputs:
moderately_sensitive:
total_cost_outcomes_plots: output/st03_08_v2_inputed_total_cost.png
# Impute APC cost
report_03_05_v2_input_apc_cost_twopm:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_05_v2_now_inpute_apc_cost_twopart.R
outputs:
moderately_sensitive:
input_apc_cost_binomial: output/st03_05_v2_now_inputed_apc_cost_binomial_output.csv
input_apc_cost_twopm: output/st03_05_v2_now_inputed_apc_cost_twopm_output.csv
input_apc_cost_reg_summary: output/st03_05_v2_now_inputed_apc_cost_reg_summary.txt
input_apc_predicted_costs: output/st03_05_v2_inputed_predict_apc_cost_tpm.csv
input_apc_cost_bi_model_check: output/st03_05_inputed_apc_binomial_model_counts.csv
input_apc_cost_gamma_model_check: output/st03_05_inputed_apc_gamma_model_counts.csv
# Impute A&E version
report_03_06_v2_inpute_a_and_e_cost_twopm:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_06_v2_now_inputed_ane_cost_twopart.R
outputs:
moderately_sensitive:
inpute_ane_cost_binomial: output/st03_06_v2_inputed_ane_cost_binomial_output.csv
inpute_ane_cost_twopm: output/st03_06_v2_inputed_ane_cost_twopm_output.csv
inpute_ane_cost_reg_summary: output/st03_06_v2_inputed_ane_reg_summary.txt
inpute_ane_predicted_costs: output/st03_06_v2_inputed_predict_ane_cost_tpm.csv
inpute_ane_cost_bi_model_check: output/st03_06_v2_inputed_ane_binomial_model_counts.csv
inpute_ane_cost_gamma_model_check: output/st03_06_v2_inputed_ane_gamma_model_counts.csv
# Impute OPA version
report_st03_07_v2_inputed_opa_cost_twopm:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/st03_07_v2_now_inputed_opa_cost_twopart.R
outputs:
moderately_sensitive:
inpute_opa_cost_binomial: output/st03_07_v2_inputed_opa_cost_binomial_output.csv
inpute_opa_cost_twopm: output/st03_07_v2_inputed_opa_cost_twopm_output.csv
inpute_opa_cost_reg_summary: output/st03_07_v2_inputed_opa_reg_summary.txt
inpute_opa_predicted_costs: output/st03_07_v2_inputed_predict_opa_cost_tpm.csv
inpute_opa_cost_bi_model_check: output/st03_07_v2_inputed_opa_binomial_model_counts.csv
inpute_opa_cost_gamma_model_check: output/st03_07_v2_inputed_opa_gamma_model_counts.csv
# QC steps: -----------
# # # QC step:
qc_01examine_unmatched_data:
needs: [generate_dataset_comparator_exclude_gp_no_long_covid, generate_long_covid_exposure_dataset]
run:
r:latest analysis/qc01_unmatched_control.R
outputs:
moderately_sensitive:
cohort: output/qc01_check_unmatched.csv
# # # QC step:
qc_02examine_historical_unmatched_data:
needs: [generate_historical_exp_data, generate_historical_comp_data_exclude_gp_no_long_covid]
run:
r:latest analysis/qc02_hx_unmatched_check.R
outputs:
moderately_sensitive:
cohort: output/qc02_hx_check_unmatched.csv
# Check 2nd care inputation
qc03_03_compare_2nd_care_inputation:
needs: [import_matched_exposure_update, import_matched_control_updates, import_matched_exposure_drug_cost, import_matched_controls_drug_costs]
run:
r:latest analysis/qc03_03_compare_2nd_care_inputation.R
outputs:
moderately_sensitive:
inputation_summary: output/qc03_03_compare_2nd_care_inputation.csv
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 00:00:41
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job information
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- healthcare_utilisation_openprompt
- Requested by
- Liang-Yu Lin
- Branch
- main
- Force run dependencies
- No
- Git commit hash
- 3510b14
- Requested actions
-
-
report_03_09_plot_types_cost_outcomes
-