Job request: 17229
- Organisation:
- Bennett Institute
- Workspace:
- the-impact-of-covid-19-on-prescribing-of-antimicrobials-interactive
- ID:
- 5ylpdwtmpswv2gor
This page shows the technical details of what happened when the authorised researcher Brian MacKenna (PHC) requested one or more actions to be run against real patient data within a secure environment.
By cross-referencing the list of jobs with the pipeline section below, you can infer what security level the outputs were written to.
The output security levels are:
-
highly_sensitive
- Researchers can never directly view these outputs
- Researchers can only request code is run against them
-
moderately_sensitive
- Can be viewed by an approved researcher by logging into a highly secure environment
- These are the only outputs that can be requested for public release via a controlled output review service.
Jobs
-
- Job identifier:
-
i4qyrgpa7rakqz7i
-
- Job identifier:
-
5vcu5yvhd7dryvku
-
- Job identifier:
-
b7kb4trthr5mbhx7
-
- Job identifier:
-
dz6uf5hfzbiupdg2
-
- Job identifier:
-
ygb34iqs4mnrcwsb
-
- Job identifier:
-
nqyd2syanvceadz2
-
- Job identifier:
-
xfnekhzgnqsqu3aj
-
- Job identifier:
-
3tachrabnah5ipxk
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 1000
actions:
generate_study_population_ethnicity_01GYAEK0G72W0DFY4ZFJ0DPA6Y:
run: cohortextractor:latest generate_cohort
--study-definition study_definition_ethnicity
--param end_date="2023-03-31"
--output-dir output/01GYAEK0G72W0DFY4ZFJ0DPA6Y --output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/input_ethnicity.csv.gz
generate_study_population_01GYAEK0G72W0DFY4ZFJ0DPA6Y:
run: cohortextractor:latest generate_cohort
--study-definition study_definition
--param codelist_1_path="interactive_codelists/codelist_1.csv"
--param codelist_1_type="medication"
--param codelist_2_path="interactive_codelists/codelist_2.csv"
--param codelist_2_type="medication"
--param codelist_1_frequency="monthly"
--param time_value="1"
--param time_ever="False"
--param time_scale="weeks"
--param time_event="before"
--param codelist_2_comparison_date="end_date"
--param operator="AND"
--param population="adults"
--param breakdowns="sex,age,ethnicity,imd,region"
--index-date-range="2019-09-01 to 2023-03-31 by month"
--output-dir=output/01GYAEK0G72W0DFY4ZFJ0DPA6Y
--output-format=csv.gz
outputs:
highly_sensitive:
cohort: output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/input_*.csv.gz
join_cohorts_01GYAEK0G72W0DFY4ZFJ0DPA6Y:
run: >
cohort-joiner:v0.0.38
--lhs output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/input_20*.csv.gz
--rhs output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/input_ethnicity.csv.gz
--output-dir output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/joined
needs: [generate_study_population_01GYAEK0G72W0DFY4ZFJ0DPA6Y, generate_study_population_ethnicity_01GYAEK0G72W0DFY4ZFJ0DPA6Y]
outputs:
highly_sensitive:
cohort: output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/joined/input_20*.csv.gz
generate_measures_01GYAEK0G72W0DFY4ZFJ0DPA6Y:
run: >
python:latest -m analysis.measures
--breakdowns="sex,age,ethnicity,imd,region"
--input_dir="output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/joined"
needs: [join_cohorts_01GYAEK0G72W0DFY4ZFJ0DPA6Y]
outputs:
moderately_sensitive:
measure: output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/joined/measure_all.csv
decile_measure: output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/joined/measure_practice_rate_deciles.csv
top_5_table_01GYAEK0G72W0DFY4ZFJ0DPA6Y:
run: >
python:latest python analysis/top_5.py
--codelist-1-path="interactive_codelists/codelist_1.csv"
--codelist-2-path="interactive_codelists/codelist_2.csv"
--output-dir="output/01GYAEK0G72W0DFY4ZFJ0DPA6Y"
needs: [generate_measures_01GYAEK0G72W0DFY4ZFJ0DPA6Y]
outputs:
moderately_sensitive:
tables: output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/joined/top_5*.csv
plot_measure_01GYAEK0G72W0DFY4ZFJ0DPA6Y:
run: >
python:latest python analysis/plot_measures.py
--breakdowns="sex,age,ethnicity,imd,region"
--output-dir output/01GYAEK0G72W0DFY4ZFJ0DPA6Y
needs: [generate_measures_01GYAEK0G72W0DFY4ZFJ0DPA6Y]
outputs:
moderately_sensitive:
measure: output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/plot_measure*.png
deciles: output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/deciles_chart.png
event_counts_01GYAEK0G72W0DFY4ZFJ0DPA6Y:
run: >
python:latest python analysis/event_counts.py --input_dir="output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/joined" --output_dir="output/01GYAEK0G72W0DFY4ZFJ0DPA6Y"
needs: [join_cohorts_01GYAEK0G72W0DFY4ZFJ0DPA6Y]
outputs:
moderately_sensitive:
measure: output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/event_counts.json
generate_report_01GYAEK0G72W0DFY4ZFJ0DPA6Y:
run: >
python:latest python analysis/render_report.py
--output-dir="output/01GYAEK0G72W0DFY4ZFJ0DPA6Y"
--population="adults"
--breakdowns="sex,age,ethnicity,imd,region"
--codelist-1-name="Doxycycline (tetracyclines)"
--codelist-2-name="Oral prednisolone codes"
--codelist-1-link="user/alexorlek/doxycycline-tetracyclines/4458c45a"
--codelist-2-link="primis-covid19-vacc-uptake/astrxm2/v1.5.3"
--time-value="1"
--time-scale="weeks"
--time-event="before"
--start-date="2019-09-01"
--end-date="2023-03-31"
needs: [event_counts_01GYAEK0G72W0DFY4ZFJ0DPA6Y, top_5_table_01GYAEK0G72W0DFY4ZFJ0DPA6Y, plot_measure_01GYAEK0G72W0DFY4ZFJ0DPA6Y]
outputs:
moderately_sensitive:
notebook: output/01GYAEK0G72W0DFY4ZFJ0DPA6Y/report.html
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 19:16:57
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job request
- Status
-
Succeeded
- Backend
- TPP
- Requested by
- Brian MacKenna (PHC)
- Branch
- main
- Force run dependencies
- Yes
- Git commit hash
- e939537
- Requested actions
-
-
run_all
-
Code comparison
Compare the code used in this job request