Job request: 17776
- Organisation:
- The London School of Hygiene & Tropical Medicine
- Workspace:
- openprompt_longcovid_vaccines
- ID:
- x6obndz43jxvh6iy
This page shows the technical details of what happened when the authorised researcher Alasdair Henderson requested one or more actions to be run against real patient data in the project, within a secure environment.
By cross-referencing the list of jobs with the
pipeline section below, you can infer what
security level
various outputs were written to. Researchers can never directly
view outputs marked as
highly_sensitive
;
they can only request that code runs against them. Outputs
marked as
moderately_sensitive
can be viewed by an approved researcher by logging into a highly
secure environment. Only outputs marked as
moderately_sensitive
can be requested for release to the public, via a controlled
output review service.
Jobs
-
- Job identifier:
-
bp6t2xtrvubrqmoz
-
- Job identifier:
-
7bpjx34fkrmphzll
-
- Job identifier:
-
evhcohiytcphazrr
-
- Job identifier:
-
s4ibla2dejv5a4c7
-
- Job identifier:
-
t5kpg5t26ovjyja5
-
- Job identifier:
-
5dfhhyeroui6ejqm
-
- Job identifier:
-
uq2c3uefni5gpvxr
-
- Job identifier:
-
47newn5hxiycwi4b
-
- Job identifier:
-
sxinv5fk3wvgmmvt
-
- Job identifier:
-
7siw7mdrqoqkyd5r
-
- Job identifier:
-
vvo5url4o6ho25n5
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 20000
actions:
generate_dataset_cases:
run: >
databuilder:v0
generate-dataset analysis/dataset_definition_cases.py --output output/dataset_cases.csv.gz
outputs:
highly_sensitive:
dataset_cases: output/dataset_cases.csv.gz
generate_dataset_controls:
run: >
databuilder:v0
generate-dataset analysis/dataset_definition_controls.py --output output/dataset_controls.csv.gz
outputs:
highly_sensitive:
dataset_controls: output/dataset_controls.csv.gz
generate_dataset_lc_pre_vacc:
run: >
databuilder:v0
generate-dataset analysis/dataset_definition_longcovid_prevaccine.py --output output/dataset_lc_pre_vacc.csv.gz
outputs:
highly_sensitive:
dataset_controls: output/dataset_lc_pre_vacc.csv.gz
clean_the_data:
run: >
r:latest
analysis/010_cleandata.R
needs: [generate_dataset_cases, generate_dataset_controls]
outputs:
highly_sensitive:
cleandata: output/clean_dataset.gz.parquet
moderately_sensitive:
txt1: output/data_properties/raw_dataset_skim.txt
txt2: output/data_properties/raw_dataset_tabulate.txt
txt3: output/data_properties/clean_dataset_skim.txt
txt4: output/data_properties/clean_dataset_tabulate.txt
clean_lc_pre_vacc_data:
run: >
r:latest
analysis/0101_clean_lcfirst_cohort.R
needs: [generate_dataset_lc_pre_vacc]
outputs:
highly_sensitive:
cleandata_lcfirst: output/clean_dataset_lc_first.gz.parquet
moderately_sensitive:
txt5: output/data_properties/lcfirst_cohort_skim.txt
txt6: output/data_properties/lcfirst_cohort_tabulate.txt
tab1_lc_first: output/tables/tab1_full_description_lc_first.html
time_update_data:
run: >
r:latest
analysis/011_timeupdate_data.R
needs: [clean_the_data]
outputs:
highly_sensitive:
timedata_longcovid: output/timeupdate_dataset_lc_all.gz.parquet
timedata_longcovid_dx: output/timeupdate_dataset_lc_dx.gz.parquet
timedata_fracture: output/timeupdate_dataset_fracture.gz.parquet
moderately_sensitive:
txt3: output/data_properties/timeupdated_dataset_skim.txt
summarise_timedata:
run: >
r:latest
analysis/012_timeupdated_summary.R
needs: [time_update_data]
outputs:
moderately_sensitive:
txt4: output/data_properties/timeupdated_lc_all_tabulate.txt
lc_all_t_plot: output/supplementary/time_updated_t_byvaccines.pdf
lc_dx_t_plot: output/supplementary/time_updated_t_byvaccines_lc_dx.pdf
summarise_cohort_at_baseline:
run: >
r:latest
analysis/013_create_table1.R
needs: [clean_the_data]
outputs:
moderately_sensitive:
table1: output/tables/tab1_baseline_description.html
table1_csv: output/tab1_baseline_data.csv
table2: output/tables/tab2_fup_description.html
table2_csv: output/tab2_fup_data.csv
vaccine_lc_gap: output/supplementary/fig_vaccines_longcovid_gap.pdf
vaccine_lc_gap_detail: output/supplementary/fig_vaccines_longcovid_gap_zoomed.pdf
vaccine_lc_gap_csv: output/supplementary/vaccines_longcovid_gap.csv
calculate_monthly_dynamics:
run: >
r:latest
analysis/014_calculate_monthly_dynamics.R
needs: [clean_the_data]
outputs:
moderately_sensitive:
monthly_dynamics: output/data_monthly_dynamics.csv
table_monthly_dynamics: output/tables/supptab01_monthly_dynamics.csv
crude_rates:
run: >
r:latest
analysis/020_cruderates.R
needs: [clean_the_data]
outputs:
moderately_sensitive:
cruderates: output/tab021_crude_lc_rates.csv
crude_rates_timeupdated:
run: >
r:latest
analysis/021_cruderates_timeupdated.R
needs: [time_update_data]
outputs:
moderately_sensitive:
t_cruderates_lc_all: output/tab022_tuv_rates_lc_all.csv
t_cruderates_lc_dx: output/tab023_tuv_rates_lc_dx.csv
output_crude_rates:
run: >
r:latest
analysis/022_combine_cruderates.R
needs: [crude_rates, crude_rates_timeupdated]
outputs:
moderately_sensitive:
cruderates_redacted: output/tables/tab3_crude_rates_redacted.csv
cruderates_plot: output/figures/fig3_crude_rates.pdf
plot_incidence:
run: >
r:latest
analysis/030_plotrates.R
needs: [time_update_data, calculate_monthly_dynamics]
outputs:
moderately_sensitive:
counts_line: output/figures/fig2_raw_counts_line.pdf
counts_line_sex: output/figures/fig2a_raw_counts_line_bysex.pdf
countscolumn: output/figures/fig2b_raw_counts_column.pdf
countscolumn_sex: output/figures/fig2c_raw_counts_column_bysex.pdf
stackedbar: output/figures/fig2e_longcovid_stacked_dx_rx.pdf
multipanelfig: output/figures/fig2_longcovid_dynamics.pdf
vaccinegap: output/supplementary/fig_agegap_vaccines.pdf
monthly_plot_v1: output/figures/fig4a_outbreak_dynamics.pdf
monthly_plot_v2: output/figures/fig4b_outbreak_dynamics_cumulative.pdf
monthly_plot_v3: output/figures/fig4c_outbreak_dynamics_experimental.pdf
monthly_plot_v4: output/figures/fig4d_outbreak_dynamics_log.pdf
monthly_plot_v5: output/figures/fig4e_longcovid_and_national_cases.pdf
plot_longcovid_flows:
run: >
r:latest
analysis/032_pathways_to_longcovid.R
needs: [clean_the_data]
outputs:
moderately_sensitive:
tests_lc_table: output/tables/tab_tests_and_longcovid.html
tests_density: output/supplementary/test_to_longcovid_density.pdf
longcovid_flows: output/figures/fig5_longcovid_flows.pdf
longcovid_flows_data: output/sankey_plot_data.csv
poisson_rates_static:
run: >
r:latest
analysis/040_poisson_regressions_staticvars.R
needs: [clean_the_data]
outputs:
moderately_sensitive:
poissonrates: output/tab023_poissonrates_static.csv
poisson_rates_timeupdated:
run: >
r:latest
analysis/041_poisson_regressions_timeupdated.R
needs: [time_update_data]
outputs:
moderately_sensitive:
poissonrates: output/tab023_poissonrates_timeupdated.csv
poisson_plots:
run: >
r:latest
analysis/042_plot_poisson_results.R
needs: [poisson_rates_static, poisson_rates_timeupdated]
outputs:
moderately_sensitive:
fig3a: output/figures/fig3a_crude_RRs.pdf
fig3b: output/figures/fig3b_adjusted_RRs.pdf
fig3c: output/figures/fig3c_longcovid_RRs.pdf
fig3d: output/figures/fig3d_longcovid_models.pdf
fig3e: output/figures/fig3e_vaccines.pdf
fig3f: output/figures/fig3f_longcovid_vaccine_models.pdf
fig3g: output/figures/fig3g_demographics.pdf
poissonplots_all: output/figures/fig3h_rate_ratios_facet.pdf
poissonplots_table: output/tables/tab4_poisson_rateratios.csv
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 17:19:16
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job information
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- openprompt_longcovid_vaccines
- Requested by
- Alasdair Henderson
- Branch
- main
- Force run dependencies
- No
- Git commit hash
- 43141e3
- Requested actions
-
-
generate_dataset_cases
-
generate_dataset_controls
-
clean_the_data
-
time_update_data
-
summarise_timedata
-
summarise_cohort_at_baseline
-
calculate_monthly_dynamics
-
crude_rates_timeupdated
-
output_crude_rates
-
poisson_rates_timeupdated
-
poisson_plots
-
Code comparison
Compare the code used in this Job Request