Job request: 18804
- Organisation:
- The London School of Hygiene & Tropical Medicine
- Workspace:
- openprompt_longcovid_vaccines
- ID:
- q2yo3vaqpd3nok72
This page shows the technical details of what happened when the authorised researcher Alasdair Henderson requested one or more actions to be run against real patient data within a secure environment.
By cross-referencing the list of jobs with the pipeline section below, you can infer what security level the outputs were written to.
The output security levels are:
-
highly_sensitive
- Researchers can never directly view these outputs
- Researchers can only request code is run against them
-
moderately_sensitive
- Can be viewed by an approved researcher by logging into a highly secure environment
- These are the only outputs that can be requested for public release via a controlled output review service.
Jobs
-
- Job identifier:
-
xjzxvtugrtck2v3y
Pipeline
Show project.yaml
version: '3.0'
expectations:
population_size: 20000
actions:
generate_dataset_cases:
run: >
databuilder:v0
generate-dataset analysis/dataset_definition_cases.py --output output/dataset_cases.csv.gz
outputs:
highly_sensitive:
dataset_cases: output/dataset_cases.csv.gz
generate_dataset_controls:
run: >
databuilder:v0
generate-dataset analysis/dataset_definition_controls.py --output output/dataset_controls.csv.gz
outputs:
highly_sensitive:
dataset_controls: output/dataset_controls.csv.gz
generate_dataset_lc_pre_vacc:
run: >
databuilder:v0
generate-dataset analysis/dataset_definition_longcovid_prevaccine.py --output output/dataset_lc_pre_vacc.csv.gz
outputs:
highly_sensitive:
dataset_controls: output/dataset_lc_pre_vacc.csv.gz
clean_the_data:
run: >
r:latest
analysis/010_cleandata.R
needs: [generate_dataset_cases, generate_dataset_controls]
outputs:
highly_sensitive:
cleandata: output/clean_dataset.gz.parquet
moderately_sensitive:
txt1: output/data_properties/raw_dataset_skim.txt
txt2: output/data_properties/raw_dataset_tabulate.txt
txt3: output/data_properties/clean_dataset_skim.txt
txt4: output/data_properties/clean_dataset_tabulate.txt
clean_lc_pre_vacc_data:
run: >
r:latest
analysis/0101_clean_lcfirst_cohort.R
needs: [generate_dataset_lc_pre_vacc]
outputs:
highly_sensitive:
cleandata_lcfirst: output/clean_dataset_lc_first.gz.parquet
moderately_sensitive:
txt5: output/data_properties/lcfirst_cohort_skim.txt
txt6: output/data_properties/lcfirst_cohort_tabulate.txt
tab1_lc_first: output/tables/tab1_full_description_lc_first.html
plot_vaccine_after_longcovid:
run: >
r:latest
analysis/0102_vaccine_after_longcovid.R
needs: [clean_lc_pre_vacc_data, clean_the_data]
outputs:
moderately_sensitive:
vaccine_pct_plot: output/figures/fig6_vaccine_after_lc.pdf
vaccine_pct_data: output/lc_first_vaccination.csv
time_update_data:
run: >
r:latest
analysis/011_timeupdate_data.R
needs: [clean_the_data]
outputs:
highly_sensitive:
timedata_longcovid: output/timeupdate_dataset_lc_all.gz.parquet
timedata_longcovid_dx: output/timeupdate_dataset_lc_dx.gz.parquet
timedata_fracture: output/timeupdate_dataset_fracture.gz.parquet
timedata_covidhosp: output/timeupdate_dataset_covidhosp.gz.parquet
moderately_sensitive:
txt3: output/data_properties/timeupdated_dataset_skim.txt
summarise_timedata:
run: >
r:latest
analysis/012_timeupdated_summary.R
needs: [time_update_data]
outputs:
moderately_sensitive:
txt4: output/data_properties/timeupdated_lc_all_tabulate.txt
lc_all_t_plot: output/supplementary/time_updated_t_byvaccines.pdf
lc_dx_t_plot: output/supplementary/time_updated_t_byvaccines_lc_dx.pdf
summarise_cohort_at_baseline:
run: >
r:latest
analysis/013_create_table1.R
needs: [clean_the_data]
outputs:
moderately_sensitive:
table1: output/tables/tab1_baseline_description.html
table1_csv: output/tab1_baseline_data.csv
table2: output/tables/tab2_fup_description.html
table2_csv: output/tab2_fup_data.csv
vaccine_lc_gap: output/supplementary/fig_vaccines_longcovid_gap.pdf
vaccine_lc_gap_detail: output/supplementary/fig_vaccines_longcovid_gap_zoomed.pdf
vaccine_lc_gap_csv: output/supplementary/vaccines_longcovid_gap.csv
calculate_monthly_dynamics:
run: >
r:latest
analysis/014_calculate_monthly_dynamics.R
needs: [clean_the_data]
outputs:
moderately_sensitive:
monthly_dynamics: output/data_monthly_dynamics.csv
table_monthly_dynamics: output/tables/supptab01_monthly_dynamics.csv
calculate_daily_dynamics:
run: >
r:latest
analysis/015_calculate_daily_dynamics.R
needs: [clean_the_data]
outputs:
moderately_sensitive:
daily_dynamics: output/data_daily_dynamics.csv
crude_rates_timeupdated:
run: >
r:latest
analysis/021_cruderates_timeupdated.R
needs: [time_update_data]
outputs:
moderately_sensitive:
t_cruderates_lc_all: output/tab022_tuv_rates_lc_all.csv
t_cruderates_lc_dx: output/tab023_tuv_rates_lc_dx.csv
output_crude_rates:
run: >
r:latest
analysis/022_combine_cruderates.R
needs: [crude_rates_timeupdated]
outputs:
moderately_sensitive:
cruderates_redacted: output/tables/tab3_crude_rates_redacted.csv
cruderates_plot: output/figures/fig3_crude_rates.pdf
plot_incidence:
run: >
r:latest
analysis/030_plotrates.R
needs: [time_update_data]
outputs:
moderately_sensitive:
counts_line: output/figures/fig2_raw_counts_line.pdf
counts_line_sex: output/figures/fig2a_raw_counts_line_bysex.pdf
countscolumn: output/figures/fig2b_raw_counts_column.pdf
countscolumn_sex: output/figures/fig2c_raw_counts_column_bysex.pdf
stackedbar: output/figures/fig2e_longcovid_stacked_dx_rx.pdf
multipanelfig: output/figures/fig2_longcovid_dynamics.pdf
vaccinegap: output/supplementary/fig_agegap_vaccines.pdf
longcovid_by_snomedcode:
run: >
r:latest
analysis/031_longcovid_by_snomedcode.R
needs: [clean_the_data]
outputs:
moderately_sensitive:
tab_snomedcode_count: output/tables/tab5_snomedcode_count.csv
fig_snomedcode_over_time: output/figures/fig2f_raw_counts_by_code.pdf
tab_snomedcode_over_time: output/raw_counts_by_code_over_time.csv
plot_longcovid_flows:
run: >
r:latest
analysis/032_pathways_to_longcovid.R
needs: [clean_the_data]
outputs:
moderately_sensitive:
tests_lc_table: output/tables/tab_tests_and_longcovid.html
tests_density: output/supplementary/test_to_longcovid_density.pdf
longcovid_flows: output/figures/fig5_longcovid_flows.pdf
longcovid_flows_data: output/sankey_plot_data.csv
demographics_by_test_status: output/tables/tab_demographics_by_test_status.html
demographics_by_test_status_csv: output/data_demographics_by_test_status.csv
demographics_by_dx_rx_tbl: output/tables/tab_demographics_by_dx_rx.html
demographics_by_dx_rx_csv: output/data_demographics_by_dx_rx.csv
plot_daily_dynamics:
run: >
r:latest
analysis/033_plot_daily_dynamics.R
needs: [calculate_daily_dynamics]
outputs:
moderately_sensitive:
dailydynamics_plot: output/figures/fig4f_daily_cases.pdf
dailydynamics_data: output/data_daily_dynamics_plot.csv
plot_monthly_dynamics:
run: >
r:latest
analysis/034_plot_monthly_dynamics.R
needs: [calculate_monthly_dynamics]
outputs:
moderately_sensitive:
monthly_plot_v1: output/figures/fig4a_outbreak_dynamics.pdf
monthly_plot_v2: output/figures/fig4b_outbreak_dynamics_cumulative.pdf
monthly_plot_v3: output/figures/fig4c_outbreak_dynamics_experimental.pdf
monthly_plot_v4: output/figures/fig4d_outbreak_dynamics_log.pdf
monthly_plot_v5: output/figures/fig4e_longcovid_and_national_cases.pdf
poisson_rates_timeupdated:
run: >
r:latest
analysis/041_poisson_regressions_timeupdated.R
needs: [time_update_data]
outputs:
moderately_sensitive:
poissonrates: output/tab023_poissonrates_timeupdated.csv
poisson_plots:
run: >
r:latest
analysis/042_plot_poisson_results.R
needs: [poisson_rates_timeupdated]
outputs:
moderately_sensitive:
#fig3a: output/figures/fig3a_crude_RRs.pdf
fig3b: output/figures/fig3b_adjusted_RRs.pdf
#fig3c: output/figures/fig3c_longcovid_RRs.pdf
#fig3d: output/figures/fig3d_longcovid_models.pdf
fig3e: output/figures/fig3e_vaccines.pdf
#fig3f: output/figures/fig3f_longcovid_vaccine_models.pdf
#fig3g: output/figures/fig3g_demographics.pdf
#poissonplots_all: output/figures/fig3h_rate_ratios_facet.pdf
poissonplots_table: output/tables/tab4_poisson_rateratios.csv
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 00:02:50
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job request
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- openprompt_longcovid_vaccines
- Requested by
- Alasdair Henderson
- Branch
- main
- Force run dependencies
- No
- Git commit hash
- 7949080
- Requested actions
-
-
plot_vaccine_after_longcovid
-
Code comparison
Compare the code used in this job request