Skip to content

Job request: 22035

Organisation:
The London School of Hygiene & Tropical Medicine
Workspace:
shielding_evaluation
ID:
gvdypygjk5uyih6i

This page shows the technical details of what happened when the authorised researcher Johnny Filipe requested one or more actions to be run against real patient data in the project, within a secure environment.

By cross-referencing the list of jobs with the pipeline section below, you can infer what security level various outputs were written to. Researchers can never directly view outputs marked as highly_sensitive ; they can only request that code runs against them. Outputs marked as moderately_sensitive can be viewed by an approved researcher by logging into a highly secure environment. Only outputs marked as moderately_sensitive can be requested for release to the public, via a controlled output review service.

Jobs

  • Action:
    fit_HDdata
    Status:
    Status: Succeeded
    Job identifier:
    sy2ns5hgaofqtsfs

Pipeline

Show project.yaml
version: '3.0'

expectations:
  population_size: 1000

actions:

  generate_dataset:
    run: >
      databuilder:v0 
        generate-dataset analysis/databuilder_definition.py --output output/dataset_all.csv.gz
    outputs:
      highly_sensitive:
        dataset_all: output/dataset_all.csv.gz
  
  clean_the_data: 
    run: > 
      r:latest
        analysis/010_import_data.R
    needs: [generate_dataset]
    outputs: 
      highly_sensitive:
        cleandata: output/data_edited.gz.parquet
      moderately_sensitive: 
        txt1: output/data_properties/clean_dataset_skim.txt
        txt2: output/data_properties/clean_dataset_tabulate.txt
      
  create_table1: 
    run: > 
      r:latest
        analysis/020_create_table1.R
    needs: [clean_the_data]
    outputs: 
      moderately_sensitive: 
        table1: output/tables/shielding_table1.html
        table1_r: output/tables/shielding_table1_redacted.html
        table1_data: output/table1_data.csv
        table2_shielding_v0: output/tables/shielding_table2.html
        table2_shielding_v1: output/tables/shielding_v1_table2.html
        table2_shielding_v2: output/tables/shielding_v2_table2.html
  

  fit_HDdata:
    run: > 
      r:latest
        modelling/runmkd_main.R
    needs: [clean_the_data]
    outputs:
      moderately_sensitive:
        #HDdata.R - only run if iplatform>0
        csv011: output/HDsynthesis/J5d_Hdata_by_age.csv
        csv012: output/HDsynthesis/J5d_Hdata_by_age_long.csv
        csv013: output/HDsynthesis/J5d_Hdata_by_age_merged_long.csv
        csv014: output/HDsynthesis/J5d_Hdata_by_shi.csv
        csv015: output/HDsynthesis/J5d_Hdata_s_by_age.csv
        csv016: output/HDsynthesis/J5d_Hdata_all_long.csv
        csv021: output/HDsynthesis/J5d_DHdata_by_age.csv
        csv022: output/HDsynthesis/J5d_DHdata_by_age_long.csv        
        csv023: output/HDsynthesis/J5d_DHdata_by_age_merged_long.csv
        csv024: output/HDsynthesis/J5d_DHdata_by_shi.csv
        csv025: output/HDsynthesis/J5d_DHdata_s_by_age.csv
        csv026: output/HDsynthesis/J5d_DHdata_all_long.csv
        csv031: output/HDsynthesis/J5d_DOdata_by_age.csv
        csv032: output/HDsynthesis/J5d_DOdata_by_age_long.csv
        csv033: output/HDsynthesis/J5d_DOdata_by_age_merged_long.csv
        csv034: output/HDsynthesis/J5d_DOdata_by_shi.csv
        csv035: output/HDsynthesis/J5d_DOdata_s_by_age.csv
        csv036: output/HDsynthesis/J5d_DOdata_all_long.csv
        #contacts
        txt010: output/modelling/J5d_Contact_matrix_year-start-24Feb20_stats.txt
        #R0
        csv040: output/modelling/J5d_Simul_R0_by_week.csv
        #simulation - only run if iplatform==0
        #svg011: output/modelling/J5d_Simul_Infected_and_R0.pdf_1-3.svg
        #svg012: output/modelling/J5d_Simul_Infected_and_R0.pdf_4-6.svg
        #txt020: output/modelling/J5d_Simul_run.txt
        #fit
        html01: output/modelling/J5d_Main_Fit_Report.html
        txt021: output/modelling/J5d_Fit_summary_1.txt
        txt022: output/modelling/J5d_Fit_summary_2.txt  
        svg021: output/modelling/J5d_Fit_summary_1.svg
        svg022: output/modelling/J5d_Fit_summary_2.svg
        svg031: output/modelling/J5d_Fit_MCMC_marginalPlot.svg
        #svg032: output/modelling/J5d_Fit_MCMC_plotout_lastPage.svg
        svg033: output/modelling/J5d_Fit_MCMC_correlationPlot.svg
        svg034: output/modelling/J5d_Fit_MCMC_Overall.svg
        svg035: output/modelling/J5d_Fit_MCMC_PosteriorSample.svg
        svg036: output/modelling/J5d_Fit_MCMC_AgeProfile_H.svg
        svg037: output/modelling/J5d_Fit_MCMC_AgeProfile_DH.svg
        svg038: output/modelling/J5d_Fit_MCMC_AgeProfile_DO.svg
        svg039: output/modelling/J5d_Fit_MCMC_variables.svg

  
  # HD_data_questions:
    # run: > 
      # r:latest
        # analysis/HDdata_questions.r
    # needs: [clean_the_data]
    # outputs:
      # moderately_sensitive:
        # txt01: output/HDsynthesis/JDat12_HDdata_questions_answered_Hospital_wCH.txt
        # txt02: output/HDsynthesis/JDat12_HDdata_questions_answered_Deaths_wCH.txt
        # txt03: output/HDsynthesis/JDat12_HDdata_questions_answered_Shielding_wCH.txt
        # txt04: output/HDsynthesis/JDat12_HDdata_questions_answered_Hospital.txt
        # txt05: output/HDsynthesis/JDat12_HDdata_questions_answered_Deaths.txt
        # txt06: output/HDsynthesis/JDat12_HDdata_questions_answered_Shielding.txt

  # HD_data:
    # run: > 
      # r:latest
        # analysis/runmkd.R
    # needs: [clean_the_data]
    # outputs:
      # moderately_sensitive:
        # csv01b: output/HDsynthesis/JDat12_Carehomes_included_H.csv
        # svg01b: output/HDsynthesis/JDat12_Carehomes_included_H.svg
        # csv02b: output/HDsynthesis/JDat12_Carehomes_included_D.csv
        # svg02b: output/HDsynthesis/JDat12_Carehomes_included_D.svg
        # csv03b: output/HDsynthesis/JDat12_Carehomes_included_DH.csv
        # svg03b: output/HDsynthesis/JDat12_Carehomes_included_DH.svg
        # csv04b: output/HDsynthesis/JDat12_Carehomes_included_DO.csv
        # svg04b: output/HDsynthesis/JDat12_Carehomes_included_DO.svg
        # csv051: output/HDsynthesis/JDat12_Hdata_all.csv
        # svg051: output/HDsynthesis/JDat12_Hdata_all.svg
        # csv052: output/HDsynthesis/JDat12_Hdata_by_age.csv
        # csv055: output/HDsynthesis/JDat12_Hdata_by_age_long.csv
        # svg052: output/HDsynthesis/JDat12_Hdata_by_age.svg
        # csv05m: output/HDsynthesis/JDat12_Hdata_by_age_merged.csv
        # csv05l: output/HDsynthesis/JDat12_Hdata_by_age_merged_long.csv
        # svg05m: output/HDsynthesis/JDat12_Hdata_by_age_merged.svg
        # csv053: output/HDsynthesis/JDat12_Hdata_by_shi.csv
        # svg053: output/HDsynthesis/JDat12_Hdata_by_shi.svg
        # csv054: output/HDsynthesis/JDat12_Hdata_s_by_age.csv
        # svg054: output/HDsynthesis/JDat12_Hdata_s0_by_age.svg
        # svg055: output/HDsynthesis/JDat12_Hdata_s1_by_age.svg
        # csv061: output/HDsynthesis/JDat12_HRdata_all.csv
        # svg061: output/HDsynthesis/JDat12_HRdata_all.svg
        # csv062: output/HDsynthesis/JDat12_HRdata_by_age.csv
        # svg062: output/HDsynthesis/JDat12_HRdata_by_age.svg
        # csv063: output/HDsynthesis/JDat12_HRdata_by_shi.csv
        # svg063: output/HDsynthesis/JDat12_HRdata_by_shi.svg
        # csv064: output/HDsynthesis/JDat12_HRdata_s_by_age.csv
        # svg064: output/HDsynthesis/JDat12_HRdata_s0_by_age.svg
        # svg065: output/HDsynthesis/JDat12_HRdata_s1_by_age.svg
        # csv071: output/HDsynthesis/JDat12_DHdata_all.csv
        # svg071: output/HDsynthesis/JDat12_DHdata_all.svg
        # csv072: output/HDsynthesis/JDat12_DHdata_by_age.csv
        # csv075: output/HDsynthesis/JDat12_DHdata_by_age_long.csv        
        # svg072: output/HDsynthesis/JDat12_DHdata_by_age.svg
        # csv07m: output/HDsynthesis/JDat12_DHdata_by_age_merged.csv
        # csv07l: output/HDsynthesis/JDat12_DHdata_by_age_merged_long.csv
        # svg07m: output/HDsynthesis/JDat12_DHdata_by_age_merged.svg
        # csv073: output/HDsynthesis/JDat12_DHdata_by_shi.csv
        # svg073: output/HDsynthesis/JDat12_DHdata_by_shi.svg
        # csv074: output/HDsynthesis/JDat12_DHdata_s_by_age.csv
        # svg074: output/HDsynthesis/JDat12_DHdata_s0_by_age.svg
        # svg075: output/HDsynthesis/JDat12_DHdata_s1_by_age.svg
        # csv081: output/HDsynthesis/JDat12_DOdata_all.csv
        # svg081: output/HDsynthesis/JDat12_DOdata_all.svg
        # csv082: output/HDsynthesis/JDat12_DOdata_by_age.csv
        # csv085: output/HDsynthesis/JDat12_DOdata_by_age_long.csv
        # svg082: output/HDsynthesis/JDat12_DOdata_by_age.svg
        # csv08m: output/HDsynthesis/JDat12_DOdata_by_age_merged.csv
        # csv08l: output/HDsynthesis/JDat12_DOdata_by_age_merged_long.csv
        # svg08m: output/HDsynthesis/JDat12_DOdata_by_age_merged.svg
        # csv083: output/HDsynthesis/JDat12_DOdata_by_shi.csv
        # svg083: output/HDsynthesis/JDat12_DOdata_by_shi.svg
        # csv084: output/HDsynthesis/JDat12_DOdata_s_by_age.csv
        # svg084: output/HDsynthesis/JDat12_DOdata_s0_by_age.svg
        # svg085: output/HDsynthesis/JDat12_DOdata_s1_by_age.svg       
        # csv091: output/HDsynthesis/JDat12_H,HR,DH,DOdata_H.csv
        # csv092: output/HDsynthesis/JDat12_H,HR,DH,DOdata_HR.csv
        # csv093: output/HDsynthesis/JDat12_H,HR,DH,DOdata_DH.csv
        # csv094: output/HDsynthesis/JDat12_H,HR,DH,DOdata_DO.csv
        # svg09b: output/HDsynthesis/JDat12_H,HR,DH,DOdata.svg
        # html01: output/HDsynthesis/JDat12_Report_HDdata.html

Timeline

  • Created:

  • Started:

  • Finished:

  • Runtime: 00:46:03

These timestamps are generated and stored using the UTC timezone on the TPP backend.

Job information

Status
Succeeded
Backend
TPP
Requested by
Johnny Filipe
Branch
main
Force run dependencies
No
Git commit hash
f05b6b2
Requested actions
  • fit_HDdata

Code comparison

Compare the code used in this Job Request