Job request: 15338
- Organisation:
- Bennett Institute
- Workspace:
- winter-pressures
- ID:
- zmkpox7urx2zpumj
This page shows the technical details of what happened when the authorised researcher Colm Andrews requested one or more actions to be run against real patient data in the project, within a secure environment.
By cross-referencing the list of jobs with the
pipeline section below, you can infer what
security level
various outputs were written to. Researchers can never directly
view outputs marked as
highly_sensitive
;
they can only request that code runs against them. Outputs
marked as
moderately_sensitive
can be viewed by an approved researcher by logging into a highly
secure environment. Only outputs marked as
moderately_sensitive
can be requested for release to the public, via a controlled
output review service.
Jobs
-
- Job identifier:
-
qlq3xcvwrpmad5ay
-
- Job identifier:
-
p7lln4feqd572xaq
-
- Job identifier:
-
4c2ycwu5cqujaprr
Pipeline
Show project.yaml
version: "3.0"
expectations:
population_size: 5000
actions:
# Other data
# ----------
# Add actions for other data to this section. Prefix them with a suitable name; place
# scripts in a similarly named sub-directory of the analysis directory; write outputs
# to a similarly named sub-directory of the output directory.
#
# For example, let's call our other data "metrics". We would prefix our actions
# "metrics_"; we would place our scripts in analysis/metrics; we would write outputs
# to output/metrics.
# Metrics data
# ------------
metrics_generate_study_dataset_winter:
run: cohortextractor:latest generate_cohort --study-definition study_definition
--param start_date='2021-12-01' --param end_date='2022-03-31'
--output-format=feather
--output-file output/metrics/input_2021-12-01.feather
outputs:
highly_sensitive:
extract: output/metrics/input_2021-12-01.feather
metrics_generate_study_dataset_summer:
run: cohortextractor:latest generate_cohort --study-definition study_definition
--param start_date='2021-06-01' --param end_date='2021-09-30'
--output-format=feather
--output-file output/metrics/input_2021-06-01.feather
outputs:
highly_sensitive:
extract: output/metrics/input_2021-06-01.feather
metrics_generate_measures:
run: cohortextractor:latest generate_measures --study-definition study_definition
--param start_date='2021-06-01' --param end_date='2021-09-30'
--output-dir=output/metrics
needs:
- metrics_generate_study_dataset_summer
- metrics_generate_study_dataset_winter
outputs:
moderately_sensitive:
measure_csv: output/metrics/*.csv
metrics_generate_single_metric:
run: r:latest analysis/metrics/single_metric.R
needs:
- metrics_generate_measures
outputs:
moderately_sensitive:
png1: output/metrics/summer_winter_difference_histogram.png
png2: output/metrics/summer_winter_ratio_histogram.png
csv1: output/metrics/summer_winter_difference_histogram_data.csv
csv2: output/metrics/summer_winter_ratio_histogram_data.csv
# Appointments data
# -----------------
appointments_generate_dataset_sql:
run: >
sqlrunner:latest
analysis/appointments/dataset_query.sql
--output output/appointments/dataset_long.csv.gz
--dummy-data-file analysis/appointments/dummy_dataset_long.csv.gz
outputs:
highly_sensitive:
dataset: output/appointments/dataset_long.csv.gz
# appointments_generate_dataset:
# run: >
# databuilder:v0
# generate-dataset
# analysis/appointments/dataset_definition.py
# --output output/appointments/dataset_wide.arrow
# outputs:
# highly_sensitive:
# dataset: output/appointments/dataset_wide.arrow
# appointments_get_freq_na_values:
# run: >
# python:latest
# python
# -m analysis.appointments.get_freq_na_values
# needs: [appointments_generate_dataset]
# outputs:
# moderately_sensitive:
# dataset: output/appointments/freq_na_values.csv
# appointments_reshape_dataset:
# run: >
# python:latest
# python
# -m analysis.appointments.reshape_dataset
# needs: [appointments_generate_dataset]
# outputs:
# highly_sensitive:
# dataset: output/appointments/dataset_long.arrow
appointments_generate_lead_time_measure_by_booked_month:
run: >
python:latest
python
-m analysis.appointments.generate_median_lead_time_measure
--value-col lead_time_in_days
--index-cols booked_month practice
needs: [appointments_generate_dataset_sql]
outputs:
moderately_sensitive:
measure: output/appointments/measure_median_lead_time_in_days_by_booked_month.csv
appointments_generate_lead_time_measure_by_start_month:
run: >
python:latest
python
-m analysis.appointments.generate_median_lead_time_measure
--value-col lead_time_in_days
--index-cols start_month practice
needs: [appointments_generate_dataset_sql]
outputs:
moderately_sensitive:
measure: output/appointments/measure_median_lead_time_in_days_by_start_month.csv
appointments_generate_num_appointments_measure_by_start_month:
run: >
python:latest
python
-m analysis.appointments.generate_num_appointments_measure
--index-cols start_month practice
needs: [appointments_generate_dataset_sql]
outputs:
moderately_sensitive:
measure: output/appointments/measure_num_appointments_by_start_month.csv
appointments_generate_num_appointments_measure_by_booked_month:
run: >
python:latest
python
-m analysis.appointments.generate_num_appointments_measure
--index-cols booked_month practice
needs: [appointments_generate_dataset_sql]
outputs:
moderately_sensitive:
measure: output/appointments/measure_num_appointments_by_booked_month.csv
appointments_generate_num_unique_patients_measure_by_booked_month:
run: >
python:latest
python
-m analysis.appointments.generate_num_unique_patients_measure
--unique-col patient_id
--index-cols booked_month practice
needs: [appointments_generate_dataset_sql]
outputs:
moderately_sensitive:
measure: output/appointments/measure_num_unique_patients_by_booked_month.csv
appointments_generate_num_unique_patients_measure_by_start_month:
run: >
python:latest
python
-m analysis.appointments.generate_num_unique_patients_measure
--unique-col patient_id
--index-cols start_month practice
needs: [appointments_generate_dataset_sql]
outputs:
moderately_sensitive:
measure: output/appointments/measure_num_unique_patients_by_start_month.csv
appointments_generate_proportion_same_day_lead_time_measure_by_booked_month:
run: >
python:latest
python
-m analysis.appointments.generate_proportion_lead_time_measure
--value-col lead_time_in_days
--value-threshold 0
--index-cols booked_month practice
needs: [appointments_generate_dataset_sql]
outputs:
moderately_sensitive:
measure: output/appointments/measure_proportion_lead_time_in_days_within_0days_by_booked_month.csv
appointments_generate_proportion_same_day_lead_time_measure_by_start_month:
run: >
python:latest
python
-m analysis.appointments.generate_proportion_lead_time_measure
--value-col lead_time_in_days
--value-threshold 0
--index-cols start_month practice
needs: [appointments_generate_dataset_sql]
outputs:
moderately_sensitive:
measure: output/appointments/measure_proportion_lead_time_in_days_within_0days_by_start_month.csv
appointments_generate_proportion_two_day_lead_time_measure_by_booked_month:
run: >
python:latest
python
-m analysis.appointments.generate_proportion_lead_time_measure
--value-col lead_time_in_days
--value-threshold 2
--index-cols booked_month practice
needs: [appointments_generate_dataset_sql]
outputs:
moderately_sensitive:
measure: output/appointments/measure_proportion_lead_time_in_days_within_2days_by_booked_month.csv
appointments_generate_proportion_two_day_lead_time_measure_by_start_month:
run: >
python:latest
python
-m analysis.appointments.generate_proportion_lead_time_measure
--value-col lead_time_in_days
--value-threshold 2
--index-cols start_month practice
needs: [appointments_generate_dataset_sql]
outputs:
moderately_sensitive:
measure: output/appointments/measure_proportion_lead_time_in_days_within_2days_by_start_month.csv
appointments_generate_deciles_charts:
run: >
deciles-charts:v0.0.33
--input-files output/appointments/measure_*.csv
--output-dir output/appointments
config:
show_outer_percentiles: true
needs:
- appointments_generate_lead_time_measure_by_booked_month
- appointments_generate_lead_time_measure_by_start_month
- appointments_generate_num_appointments_measure_by_start_month
- appointments_generate_num_appointments_measure_by_booked_month
- appointments_generate_num_unique_patients_measure_by_start_month
- appointments_generate_num_unique_patients_measure_by_booked_month
- appointments_generate_proportion_two_day_lead_time_measure_by_start_month
- appointments_generate_proportion_two_day_lead_time_measure_by_booked_month
- appointments_generate_proportion_same_day_lead_time_measure_by_start_month
- appointments_generate_proportion_same_day_lead_time_measure_by_booked_month
outputs:
moderately_sensitive:
deciles_charts: output/appointments/deciles_chart_*.png
deciles_tables: output/appointments/deciles_table_*.csv
Timeline
-
Created:
-
Started:
-
Finished:
-
Runtime: 02:34:22
These timestamps are generated and stored using the UTC timezone on the TPP backend.
Job information
- Status
-
Succeeded
- Backend
- TPP
- Workspace
- winter-pressures
- Requested by
- Colm Andrews
- Branch
- main
- Force run dependencies
- No
- Git commit hash
- 8a2fc32
- Requested actions
-
-
metrics_generate_study_dataset_winter
-
metrics_generate_study_dataset_summer
-
metrics_generate_measures
-
Code comparison
Compare the code used in this Job Request